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Chapter 1

Introduction
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1. Introduction

The once underappreciated role of metabolism in cancer

The past years have seen research efforts into the metabolic aspects of cancer
reinvigorated. This renewed attention is not very surprising, as we do not
yet understand why the metabolic make-up of highly proliferative cells is so
different from that of their healthy counterparts. Among the most prominent
differences is the Warburg effect, the tendency of many cancers to forgo the
oxidation of glucose, even when they have enough oxygen available [1]. In
addition, recent discoveries of regulatory functions of metabolites and meta-
bolic enzymes [2,3] suggest a previously underappreciated role of metabolism
in oncogenesis.

In the study of the Warburg effect, significant progress came from the dis-
covery of mutations and alternative splice isoforms of metabolic enzymes [4],
as well as from the elucidation of regulatory pathways that are dysfunctional
in cancerous tissue [5]. Recent data even indicates that metabolism can also
influence signaling dynamics, which is in contrast to more classical views that
suggest that signaling networks are in full control of metabolism. Evidence for
these regulatory interactions include the discoveries that certain small organic
acids have additional roles as allosteric effectors of signaling molecules [6, 7],
and that some metabolic intermediates act as phosphate donors for protein
kinases. The latter phenomenon can influence the phosphorylation of target
proteins [3], or directly alter their function [2].

These new discoveries illustrate that the interface between metabolism and
signaling is not strictly one-way. Nevertheless, the signaling machinery tradi-
tionally receives more attention in the context of cancer. Disturbed signaling
networks are pivotal in all of the hallmarks of cancer that were originally pro-
posed by Hanahan & Weinberg in 2000 [8], and under normal circumstances,
signaling networks are tightly regulated. However, mutations in key signal-
ing proteins can lead to overexpression of oncogenes and silencing of tumor
suppressor genes, which can result in deregulation of the entire signaling net-
work. Examples of over- or underexpression of signaling proteins leading to
dysfunction are as numerous as they are detrimental [9]. For instance, tumor
suppressor p53 is known to be mutated or deleted in more than 50% of hu-
man cancers [10, 11], and amplification of the epidermal growth factor family
member gene HER2 (human epidermal growth factor receptor 2, also known
as ErbB2) has been found in 20-25% of all breast cancers [12], as well as in
other cancer types like gastric cancer [13]. Additionally, several members of
the PI3K/Akt signaling pathway and the MAPK/ERK signaling pathway are
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often found to have mutations in cancer [9]. Both pathways are initiated by the
activation of receptor tyrosine kinases (RTKs) and G protein-coupled receptors
(GPCRs) by their respective ligands, and can trigger downstream responses
that lead to proliferation and cell survival.

Although on paper it may seem that alterations to the signaling machinery
can by themselves explain the cancer phenotype, decades of experience with
hit-or-miss therapeutic interventions that target signaling components speak
to the contrary. Moreover, whereas every other paper about cancer starts by
remarking that the disease is “multifaceted” or “complex”, very few of these
papers actually deal with more than one facet. Especially aspects that are as
broadly defined as “metabolism” and “signaling” are seldom viewed from an
integrative perspective, and as a result, the interface between these domains is
poorly understood. However, in recognition of the necessity of gaining such
understanding, “reprogramming of energy metabolism” was added to the list
of cancer hallmarks when it was recently revised [14].

Here, we will discuss the reciprocal relationship between signaling and
metabolism in the context of cancer, as well as the computational techniques
that can be employed to elucidate the intricacies of these large domains. First,
let us look at both domains separately.

Oncogenic adaptations of core metabolism

Very generally speaking, metabolism is reponsible for the conversion of what
the cell finds in its environment to what the cell needs to function or reproduce.
“What the cell needs” is a very broad definition, and it could range from
the production of ATP, amino acids, and lipids for maintenance (or for the
production of biomass), to the storage of carbohydrates in the form of glycogen,
or to the performance of some function that is expected of that particular cell
(type). The latter category includes e.g. hormone production by glandular
cells, detoxification processes in the liver, or ATP production by muscle cells
that require this energy to contract when they are asked to. Proliferation places
a great demand on the production of biomass components (and energy to put
them together), and consequently, cancer cells display increased metabolic
activity. However, even though this distinctive phenotype of cancer cells was
first described almost a century ago [1], it has mostly managed to stay below
the scientific radar – until recently. Recent research efforts have picked up this
topic and identified many alterations of core metabolic enzymes in an attempt
to explain the Warburg effect. After decades of research, there is still no single
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1. Introduction

satisfying explanation, but we will give a brief overview of the most prominent
current views in this section.

Is metabolism a subordinate or a major player?

Otto Warburg envisioned metabolism at the center of it all. His hypothesis
for the observation that cancer cells forgo the full oxidation of glucose in the
TCA cycle in favor of a quick 2 ATP per glucose by producing lactate [15] was
that cancer cells do not have functional mitochondria anymore [16]. With the
advent of modern molecular biology and the subsequent shift in focus towards
genetics, this view of metabolism as the driving force behind cells becoming
cancerous has been surpassed by one in which metabolism is subordinate to
signal transduction cascades and transcriptional regulation.

Viewing cancer cells as cells where a single runaway system can steer the
entire cellular machinery towards unchecked replication may seem elegant
(albeit not very robust), but can we be sure that this is the whole story?
Some fairly recent insights suggest metabolism plays a more central role.
For one, famously, enhanced anaerobic metabolism is a common feature of
fast-growing cancers [17], but also of unicellular organisms growing at high
substrate availability (e.g. the Crabtree effect in S. Cerevisiae [18] and the
“bacterial Crabtree effect” in E. Coli [19]). Thus, cancer’s low-energy yield
aerobic fermentation of glucose into lactate may reflect a mammalian metabolic
program that is also used by healthy proliferating cells. The recently renewed
interest in cancer metabolism has led to knowledge of various individual
adaptations that contribute to the Warburg effect, and this knowledge can be
used to shed light on such fundamental issues. We will review these insights
below.

A metabolic perspective on the Warburg effect

Perhaps the most prominent example of glycolytic enzyme dysregulation in
cancer is pyruvate kinase (PK), the final enzyme in glycolysis (see Figure 1.1A).
In many cancers, the dominant form of PK is its embryonic splice variant,
known as pyruvate kinase M2 (PKM2) [20]. PKM2 can form either homo-
dimers or -tetramers [20]. The tetrameric form, which is the predominant form
in differentiated cells, has a high affinity for its substrate phosphoenolpyru-
vate (PEP), and exemplifies that PKM2 is not restricted to cancer cells [21].
In contrast, dimeric PKM2 is much less efficient at converting PEP to pyru-
vate than its tetrameric and non-embryonic counterparts [20]. Interestingly,
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Figure 1.1: (A) In normal situations, glucose (primarily) flows towards pyruvate which is then
converted by PDH to acetyl-CoA, which subsequently enters the TCA-cycle to produce energy
andor metabolic intermediates. (B) In cancerous and other highly proliferative tissues, a different
situation occurs. PDK phosphorylates PDH, inactivating it and cutting off flow towards the TCA
cycle. Pyruvate and the metabolites upstream of it accumulate and can be converted to amino
acids, or to other biomass precursors in the pentose phosphate pathway. Flux through the majority
of these pathways is controlled by the demand side (i.e. the rate of biosynthesis) and cannot be
considered “overflow metabolism”; instead, superfluous carbon or ammonium are secreted in the
form of lactate and alanine, respectively. Meanwhile, the TCA cycle is fueled by glutamine and
yields αKG or oxaloacetate (OAA), which can in turn be used in amino acid synthesis.

the formation of PKM2 tetramers is interfered with by phosphorylation of the
Y105 residue of the protein [22]. This phosphorylation is common in human
cancers [22], and consequently, the “inefficient” dimeric PKM2 is often found
in cancer cells.

The decreased substrate affinity of dimeric PKM2, compared to tetrameric
PKM2 or regular PK, presents a paradox: how can cancer cells have increased
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1. Introduction

glycolytic flux and enhanced lactate production if the final step of glycolysis
is being slowed down? One explanation is the simultaneously enhanced
expression of multiple glycolytic enzymes in cancer cells. Indeed, transcription
factors with such broad impact on metabolism are known, and we will discuss
them in detail in a later section. On a more theoretical note, the impact
that individual enzyme activities have on pathway flux has been extensively
studied within the theoretical framework of metabolic control analysis (MCA)
[23]. In this light, the fact that PKM2 can have lower activity while the pathway
flux increases, suggests that pyruvate kinase does not control flux through the
pathway, and that mutations in this enzyme serve another purpose.

Metabolic enzymes and intermediates have alternative roles in
cancer

In spite of these insights from MCA, one functional consequence of dimeric
PKM2 that has been suggested is that it causes congestion in the glycolytic
pathway, with the build-up of glycolytic intermediates eventually overflowing
into other pathways, such as anabolic routes that lead to the formation of
building blocks for amino acids, nucleotides, and more (Figure 1.1B) [20]. This
hypothesis, known as “overflow metabolism”, goes against metabolic control
logic: As the flux through glycolysis is much higher than through anabolic
pathways, and glucose is not limiting in most cases, one would expect “control
by demand” (as shown by detailed supply-demand analyses carried out by
Hofmeyr and colleagues [24], and explained in Box 1). In such a system the
product of a biosynthetic pathway inhibits the first step of that pathway to
make sure supply matches the demand for the product — a design commonly
observed for e.g. amino acid biosynthesis. If anabolism would drain glycolytic
intermediates, the high flux of glycolysis should simply be able to replenish
these pools very effectively. Consequently, the flux through a biosynthetic
pathway originating from glycolysis is expected to be regulated through “pull”
by the demand side, not by “push” from the supply side (Box 1).

Box 1: Supply and demand in metabolic control analysis

With respect to any biomass precursor, one can view the reactions that produce that
metabolite as “supply”, and reactions that use it to form biomass as “demand”.
Under homeostatic conditions, the fluxes (J) through supply and demand are
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equal, and the concentration of the biomass precursor does not change. Typically,
the reactions that produce, say, an amino acid from a glycolytic intermediate, are
highly sensitive to their own product, causing production of that amino acid to
be inhibited unless it is used up by other (demand-side) reactions (Figure 1.2A).
As a consequence, the flux through the supply reactions (v1) should be unaffected
by the glycolytic intermediate concentration, and the only way to increase flux
through the pathway is by increasing the demand (v2): this causes the amino
acid’s concentration to decrease and reduces the inhibition of v1. This is illustrated
in Figure 1.2B: If demand (v2) increases, supply (v1) will be able to match it, while
the amino acid’s concentration may be affected slightly to mitigate its inhibition
of v1. However, trying to increase flux through v1 by increasing the glycolytic
intermediate concentration is ineffective, as the rate of v1 drops rapidly with
the resulting increased amino acid concentration (Figure 1.2C). Supply-demand
theory is reviewed in [24].

In bacteria, glycolytic intermediates have been suggested to act as “flux
sensors” that help determine the metabolic status of the cell. For instance,
high fructose 1,6-bisphosphate levels appear to indicate a high glucose flux
state [25]. A build-up of glycolytic intermediates, such as the one we would
expect to be caused by an inefficient enzyme at the end of the pathway
(e.g. dimeric PKM2), could entail a slew of allosteric interactions that tell the
cell what (not) to do. For instance, in tumor cells, the glycolytic intermediate 3-
phosphoglycerate (3PG) has been shown to inhibit 6-phosphogluconate dehy-
drogenase, an enzyme in the pentose phosphate pathway [26]. 2-phosphoglycerate
(2PG), which is one enzymatic step “downstream” of 3PG, in turn provides
feedback control of 3PG levels by activating 3-phosphoglycerate dehydroge-
nase [26]. Similarly, 1,3-bisphosphoglycerate (1,3BPG) can spontaneously react
with select lysine residues in proteins to form 3-phosphoglyceryl-lysine, a pro-
cess that can result in the inhibition of glycolytic enzymes [27]. These phenom-
ena are not limited to glycolytic intermediates: The TCA cycle intermediates
succinate and fumarate have been shown to affect glycogen synthesis by al-
losteric interactions with glycogen synthase [27]. These and hundreds of other
known allosteric interactions are collected in the “Allosteric Database” [28], a
useful resource and an apt illustration of the extent to which these mechanisms
extend their influence.

Although the above could make metabolism seem self-contained and self-
regulating, it is still strongly dependent on external checks and balances. For
instance, if pyruvate is not converted to lactate, it can enter the TCA cyle
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Figure 1.2: Supply and demand in metabolic control analysis. The legend for this figure is included
in Box 1.

after being converted to acetyl-CoA by pyruvate dehydrogenase (PDH, Fig-
ure 1.1A). As the link between glycolysis and the TCA cycle, PDH is not
only subject to transcriptional regulation, which is relatively slow (minutes
to hours), but it can also be phosphorylated by PDH kinase (PDK), which
reduces PDH’s activity and is a much faster mechanism (seconds). Having the
activity of PDH reduced significantly restricts flux from pyruvate to acetyl-
CoA, and thus from glycolysis to the TCA cycle [29]. PDK has four known
isoforms, of which two important ones (PDK2 and PDK4) are regulated by
peroxisome proliferator-activated receptor γ (PPARγ), which is technically a
nuclear receptor, but can also be considered a nutrient signaling transcription
activator in this context [30]. PDH kinase 1 itself can also be directly phospho-
rylated, which enhances its activity [31]. Thus, unsurprisingly, alterations to
PDH and the machinery that phosphorylates PDH are also commonly linked
to cancerous phenotypes [31].
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The TCA cycle sustains the production of biomass, but not of energy
in cancer cells

Downstream of glycolysis, contrary to Warburg’s initial hypothesis, most can-
cer cells do possess functional mitochondria, although the relative fluxes of
the substrates entering the TCA cycle are often different between cancerous
and healthy cells (see e.g. [32]). Notably, cancer cells are known to rely heavily
on glutamine for sustaining their metabolism, to the point that many cancers
depend on the availability of glutamine to survive [33]. After glutaminoly-
sis, in which glutamine is converted into glutamate and glutamate is in turn
converted into alpha-ketoglutarate (αKG; also known as 2-oxoglutarate), the
glutamine-derived αKG can be used to produce amino acids (histidine, pro-
line, and arginine) and the antioxidant peptide glutathione, or it can enter the
TCA-cycle [20]. Recent work suggests that de novo production of lipids in can-
cer cells almost exclusively uses glutamine-derived carbon [34], and that the
TCA cycle runs in the direction of reductive carboxylation (the opposite of ox-
idative phosphorylation) to make this carbon available as acetyl-CoA [35, 36].
As enhanced proliferation is contingent on the availability of lipids and amino
acids, it is likely that cancer cells have to maintain at least a basal level of
TCA cycle activity to survive, with oxygen-dependent energy production a
convenient side-effect of this rather than a primary goal. Accordingly, lactate
formation reduces the cells’ reliance on the availability of oxygen: (abundant)
carbon can be “wastefully” metabolized to produce 2 ATP per glucose, while
preserving oxygen for use by other cellular processes.

Functional and biochemical perspectives combined: overflow
metabolism

So what happens if glucose is not fully oxidized? There are several views on
this, but what they have in common is that the blockage of TCA entry (by
the inhibitory phosphorylation of PDH) forces the cell to look elsewhere for
the energy it requires. With the main carbon supply of the TCA cycle cut off,
the cell must resort to increasing the glycolytic flux to produce sufficient ATP
to support maintenance (and growth). This has a number of consequences.
Famously, the large quantities of carbon that the cell imports must go some-
where, and the most commonly observed solution for this is the secretion of
lactate [1]. The production of lactate from pyruvate does not use or produce
ATP, but it does defray the NADH investment that is made upstream in the
glycolytic pathway (Figure 1.1B). The production and secretion of lactate to
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1. Introduction

rid the cell of carbon and alanine to rid the cell ammonium are examples
of what is known as “overflow metabolism”, which is commonly consid-
ered to be a feature of fast-growing cancers [17]. As described above and in
Box 1, it is unlikely that increased concentrations of glycolytic intermediates
can “push” flux into biosynthetic pathways, as control of these processes is
usually demand-driven [24]. Therefore, fluxes towards biomass components
cannot be considered overflow mechanisms, although they are often elevated
in proliferating cells.

It is still slightly paradoxical that inhibition of PDH and pyruvate kinase
can lead to an enhanced glycolytic flux, but in part, control by demand and
negative feedback can explain this. Upon PDH inactivation, lactate formation
at a mere 2 ATP per glucose is the major source of ATP. Given this much lower
yield, at the same glycolytic flux and unaltered ATP demand, ATP would
quickly drop to unhealthy levels. As glycolysis responds to ATP demand
(e.g. the enzyme phosphofructokinase is particularly sensitive to the energy
charge [37]), glycolytic flux will increase via allosteric feedback mechanisms,
strictly at the metabolic level. However, as enzymes get saturated and thus
have an inherently limited capacity, the expression levels of these enzymes
must increase if the cell is to sustain its enhanced glycolytic flux – and glycolytic
flux must be quite high to make up for the diminished ATP yield of this
pathway when lactate is the end point. Kacser et al. showed that to increase
a flux through a pathway several-fold while maintaining metabolite levels at
more or less constant levels, multisite modulation (the regulation of the levels
of multiple enzymes in a pathway, as opposed to regulation of a single “key”
enzyme) is required [38,39]. In the extreme case, in a linear pathway, doubling
all the enzyme levels at once would double the pathway flux without changing
any metabolite level. In cancer cells, hypoxia-inducible factor 1α (HIF1α) can
achieve this in its role as a master regulator of glycolytic enzyme expression [40]
(see below).

Pyruvate is a central molecule in metabolism, and it can be used for more
than fueling the TCA cycle or producing lactate: Among other things, it can
also act as a precursor for the amino acids alanine and serine. Alanine is often
secreted by cancer cells [41,42], which may be a mechanism to get rid of excess
nitrogen via a harmless amino acid with minimal carbon content, instead of
via the toxic ammonia. Serine, in contrast, is not secreted, but its synthesis is
still often increased in cancer compared to healthy tissue; this is particularly
notable in breast cancer cells [32]. Of course the amount of serine that can
be put into protein production must still be proportional to the other amino
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acids, so any excess serine must go somewhere else. Indeed, a link between
the biosynthesis routes that produce serine and αKG was observed in the same
study [32]. Alternatively, serine can be converted to the amino acid glycine
in a one step enzymatic process that also yields a one carbon unit to folate,
which is required for proliferation [43]. Interestingly, serine is also an allosteric
activator of PKM2 [44], and a relationship between PKM2 activity and serine
and glycine consumption was recently reported [44]. In this study, researchers
showed that deprivation of both amino acids from colon cancer cells leads to
inhibition of pyruvate kinase activity and reduced lactate production, as well
as increased mitochondrial citrate production [44].

Similarly to serine, the role of glycine in cancer is not fully understood, al-
though new technologies offer tantalizing insights. In a recent study, metabo-
lite profiling of a panel of 60 human cancer cell lines [45] indicated a surpris-
ing correlation between glycine consumption and cellular proliferation rates,
apparently signifying that glycine requirements exceed the endogenous pro-
duction capabilities of rapidly proliferating cells. Accordingly, the enzymes
involved in the mitochondrial glycine biosynthetic pathway were found to
have high expression levels, but more importantly, breast cancer patients with
high expression levels of these enzymes (SHMT2, MTHFD2 and MTHFD1L)
had higher mortality [45].

Expanding our view to include the rest of core metabolism, studies indicate
substantial flux into the pentose phosphate pathway [46, 47] to produce nu-
cleotide and amino acid precursors as well as NADPH, an energy source driv-
ing many anabolic/biosynthetic processes, and – potentially more important –
a substrate for the reduction of reactive oxygen species. A final carbon sink of
note is αKG. Intriguingly, in addition to its familiar roles as a TCA cycle inter-
mediate and amino acid precursor, it also interacts with prolyl hydroxylases
EGLN1-3 to destabilize the transcription factor HIF1α [48]. This transcription
factor steers cells towards a Warburg-like metabolism if left unchecked [49],
and we will discuss it in detail in the next section.

The influence of signaling pathways on metabolic regulation
in cancer

The relation between signaling and tumorigenesis has been extensively stud-
ied, but even so, we are far from having a comprehensive understanding of the
signaling network like we do for metabolism [50]. In this sense, it is illustra-
tive that the means by which the signaling network and the metabolic network
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1. Introduction

are connected have started receiving attention only very recently [14, 51–54].
Though the full list of signaling proteins that influence metabolism is exten-
sive, in this section we will highlight the ones that appear the most important
in the context of cancer.

HIF1α is a key signaling molecule in the regulation of metabolism

As its name implies, hypoxia-inducible factor 1α is normally active in cells
that undergo hypoxia. It regulates many genes involved in tumorigenesis,
such as those governing angiogenesis, metastasis and invasion, genetic insta-
bility and, not surprisingly, glucose and energy metabolism [40]. In energy
metabolism, HIF1α is known to regulate the expression of most glycolytic
genes, including hexokinase 1 and 2 (HK1 and HK2), enolase 1 (ENO1), pyru-
vate kinase M2 (PKM2), and lactate dehydrogenase A (LDHA) [55, 56]; it also
regulates the transcription of pyruvate dehydrogenase kinase 1 (PDK1) and
glucose transporters GLUT1 and GLUT3 [57] (Figure 1.3).

But HIF1α is not always active: In the presence of oxygen, hydroxyla-
tion of proline residues targets the protein for proteasomal degradation [52].
This process cannot take place under hypoxic conditions, as the hydroxyla-
tion reaction utilizes oxygen as a cosubstrate [52], so HIF1α is rescued from
degradation when there is no oxygen. Interestingly, some prolyl hydroxylases
are αKG-dependent [7], effectively enabling feedback from the TCA cycle to a
regulator of core metabolism. Conversely, prolyl hydroxylases can be inhib-
ited by 2-hydroxy-glutarate, which is produced from αKG by mutated forms
of isocitrate dehydrogenase (IDH1/2), a TCA-cycle enzyme [58, 59] (Figure 4).
Furthermore, even in the presence of oxygen, lactate and pyruvate have been
shown to cause HIF1α accumulation [5], which implies the existence of an in-
triguing (and dangerous!) feed-forward loop from (aerobic) glycolysis to the
machinery enhancing it. This situation where HIF1α regulates metabolism,
while metabolism regulates HIF1α, leads to the question of which of the two is
in charge – but while we currently have quite some knowledge about HIF1α’s
antics, a clear-cut answer to this question still lies beyond our reach.

Since HIF1α plays such a pivotal role in the regulation of metabolism and
influences practically all enzymes in glycolysis, it should not be surprising
that it also has oncogenic potential. Indeed, mutants of the protein have
been reported that have enhanced stability in aerobic conditions, compared to
wild type HIF1α [60]. Another means of oxygen-independent preservation of
HIF1α is through mTOR (mammalian Target Of Rapamycin)-induced protein
synthesis, which occurs in multiple tumor types (Figure 1.3) [61]. Deregulation
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1. Introduction

of mTOR, and the subsequent synthesis of HIF1α, can be caused by loss of
function of PTEN (phosphatase and tensin homolog) or by HER2-induced
overexpression, among other causes [55].

PTEN is an important tumor suppressor, whose surrounding signaling
network has received much attention [62]. It is also a confirmed target of the
microRNA miR-21 [63], one of the archetypical oncomiRs [64]. We discovered
that the isoform landscape of this miRNA, which was previously thought
to be of little consequence, is a product of a novel regulatory mechanism
which can induce the degradation of miR-21 (Chapter 2). This additional
layer of regulation offers the cell more fine-grained control over its regulatory
apparatus, but complicates matters further for those intending to understand
it.

The rerouting of metabolic flux to a less oxygen-dependent mode fits well
with HIF1α becoming active under hypoxic conditions, but metabolism is not
the only cellular function HIF1α tunes towards low-oxygen conditions. Re-
cently, the protein was reported to promote angiogenesis by enhancing the
transcription of the microRNA miR-210 [65], and of the chemokine recep-
tors CXCR4 and CXCR7 (C-X-C chemokine receptor types 4 and 7, respec-
tively) [65–67]. CXCR7 is activated by CXCL12 (C-X-C motif chemokine 12,
also known as SDF1α), the same ligand that activates CXCR4, but in contrast to
CXCR4, the signal transduction pathways downstream of CXCR7 are poorly
understood. However, their coordinated regulation by HIF1α suggests the
interesting possibility of the two receptors working in harmony, e.g. by pro-
moting angiogenesis in response to hypoxia. Indeed, in a high-throughput
reverse phase protein array (RPPA) time course study, we found many signal-
ing intermediates that seem to be affected by both receptors. This is described
in Chapter 3.

Alterations in the transcription factor c-Myc contribute to
mitochondrial function and glutaminolysis

Similarly to HIF1α, the transcription factor c-Myc is involved in the regulation
of several glycolytic genes, including hexokinase 2 (HK2), enolase I (ENO1),
lactate dehydrogenase A (LDHA) and phosphofructokinase (PFK) [68] (Fig-
ure 1.3). It is often altered, amplified, or chromosomally translocated in cancer:
By estimation, increased c-Myc expression contributes to the cause of at least
40% of all human cancers [68]. Furthermore, c-Myc transcriptionally activates
genes that increase mitochondrial biogenesis and mitochondrial function [53].
In addition to upregulating the glucose transporter GLUT1 [69], c-Myc is
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known to directly induce the expression of glutamine transporters SLC5A1
and SLC7A1, and thus to also play a role in the regulation of glutaminoly-
sis [70]. Interestingly, the same study showed that c-Myc is able to repress the
expression of microRNAs miR-23a and miR-23b, and to thereby increase the
levels of glutaminase 1 (GLS1) and contribute to another layer of control on
glutaminolysis (Figure 1.3).

Since c-Myc and HIF1α seem to activate the same set of genes, one may
wonder whether they do this concurrently and whether they are able to reg-
ulate and interact with one another. Interestingly, both are true. When c-Myc
is overexpressed it cooperates with HIF1α to alter cellular metabolism and
upregulate glycolytic enzymes [71]. Conversely, HIF1α is also known to an-
tagonize c-Myc function by interacting with Myc-associated proteins, whereas
its family member HIF2 seems to collaborate with c-Myc rather than to oppose
it [71].

Signaling enzymes and transcription factors are intimately intertwined to
allow for fine-grained control, but this can make it difficult to assign a single
role to a single actor. For instance, much like p53, liver kinase B1 (LKB1)
is known for its activity as a tumor suppressor, but also for connecting cell
growth and energy metabolism by directly activating AMP-activated protein
kinase (AMPK) [72]. AMPK acts as a sensor of intracellular ATP, ADP and
AMP levels, and can serve as a central metabolic switch by promoting the gen-
eration of ATP by catabolic pathways and inhibiting anabolic pathways [73].
It can induce acute metabolic changes by phosphorylating specific metabo-
lic enzymes, but it also exerts control on metabolism by modulating enzyme
transcription [74]. Interestingly, AMPK is able to control cell growth and tu-
morigenesis by suppressing mTOR dependent transcriptional regulators [74],
thus providing feedback from energy metabolism to the cell growth machinery.

On the interface between signal transduction and metabolism

As we noted above, metabolism is traditionally described in literature as a
simple subordinate to signaling. But there are various ways in which metabo-
lism influences signaling, ranging from allosteric interactions by metabolites
to unexpected signaling functionality of metabolic enzymes. We will list the
highlights of this emerging field here.
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1. Introduction

Metabolic intermediates can allosterically affect signaling

The most straightforward way for a metabolite to influence a process it does not
itself participate in is through an allosteric interaction with the enzyme that cat-
alyzes the reaction. While such interactions are abundant and well-studied in
the case of metabolites influencing metabolic enzymes [28], common metabo-
lites have also been shown to allosterically interact with signaling enzymes.
For example, glutamine-derived αKG from the TCA cycle has been shown to
activate mTORC1 through interactions with prolyl hydroxylases [7, 75] (Fig-
ure 1.4). Similarly, p53 activity has been reported to be suppressed by increased
glucose metabolism [76]. Although this suppression appears to coincide with
the expression of the glucose transporter GLUT1 and hexokinase [76], the
precise cause is yet unknown.

Furthermore, lactate and pyruvate, important metabolites in core metabo-
lism, have been shown to induce the accumulation of HIF1α [5]. The specific
mechanism underlying this is currently unclear, but we do know that lactate
can inhibit prolylhydroxylase 2 activity, and thereby stabilize HIF1α [77]. This
was only observed in normoxic oxidative tumor cells and not in tumor cells
with a Warburg-phenotype. Another recently described mechanism by which
metabolites can influence signaling or even act as signaling molecules them-
selves is through metabolite-sensing GPCRs [78]. As such a sensor exists for
lactate, this offers the interesting possibility for cancer cells to send signals to
themselves by secreting lactate or other “waste products”, such as alanine.

A major challenge at this point is that current knowledge about these
interactions is of a qualitative nature. Quantitative (kinetic) data, such as
those available for allosteric interactions in metabolism, will greatly aid our
understanding of the interplay between metabolism and signaling, as they
can be used to quantify the responses to various stimuli at a high resolution.
However, unfortunately, straightforward assays of transcription factor or sig-
naling enzyme activity are not yet available, which makes the study of this
“upstream” feedback a technological challenge as well as a conceptual one.

Signaling molecules and metabolic enzymes can modulate each
other through phosphorylation

Feedback from metabolism to other modules is not limited to allosteric inter-
actions, as even metabolic enzymes may have functional significance in the
context of signaling. Recently, phosphoenolpyruvate (PEP) was shown to not
only provide its phosphate group to ADP to yield ATP in the “normal” course
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1. Introduction

of glycolysis, but to also function as a phosphate donor in enzyme-mediated
reactions that phosphorylate other enzymes [2]. In this context, PKM2 has
been shown to act as a (signaling) kinase that phosphorylates STAT3 [3], and
PEP has also been shown to be involved in the phosphorylation of phospho-
glycerate mutase 1 (PGAM1) in PKM2 expressing cells [2]. Both observations
support our suspicion that the significance of PKM2 lies in the signaling rather
than the metabolic realm (Figure 1.4).

PKM2 is not alone in this sense: Other metabolic enzymes have been
shown to have so-called “moonlighting activity” as well. Notably, GAPDH
has long been known to act as a phosphatidylserine-binding protein with a
role in membrane fusion [79], and enolase has been detected on the cell surface
where it may have a role in sensing plasminogen [80]. In a similar vein, various
other metabolic enzymes, including PKM2 itself [81], LDHA [82], and the PDH
complex [81] can be phosphorylated, but the functional significance of these
modifications varies from enzyme to enzyme.

For example, hexokinase (HK) can be phosphorylated by a variety of pro-
teins in a variety of species, inducing a wide range of effects. Phosphoryla-
tion of serine 14 in yeast affects HK2 shuttling between the nucleus and the
cytoplasm [83], hexokinase phosphorylation in frog increases the enzyme’s
substrate affinity and activity [84], and HK2 phosphorylation by Akt protects
against the consequences of ischemic injury and oxidative stress in murine
cardiomyocytes [83].

Another illustration of the wide range of effects of enzyme phosphorylation
is found in phosphofructokinase 2 (PFK2). Normally, this enzyme phospho-
rylates fructose-6-phosphate to yield fructose-2,6-bisphosphate, which in turn
allosterically activates PFK1, an important main-branch glycolytic enzyme
(Figure 1.1A). PFK2 can be phosphorylated by Protein Kinase A, inactivating
it [85], but phosphorylation of a different amino acid residue by AMPK instead
activates the enzyme [86].

If the above shows anything, it is that simply listing the knowledge that
exists on various network components will not get us very far towards under-
standing said network. Modeling these components as an integrated system
is an obvious remedy, and several methods to accomplish this are available,
each with its own benefits and drawbacks. While the work described in later
chapters of this thesis makes use of a broad spectrum of modeling options,
genome-scale stoichiometric models constitute the bulk of the modeling effort
we present. Stoichiometric modeling is generally considered to be the only
feasible option for modeling metabolism on the genome scale, and we shall
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Figure 1.5: Simple metabolic network consisting of three reactions, three external metabolites (S,
P1 and P2) that act as source or sink, and one internal metabolite (X).

describe it and its place in the spectrum of modeling options in detail in this
next and final section.

Genome-scale metabolic models: their place in the spectrum
of modeling options

Two opposing strategies have been generally employed to model biological
systems. The so-called “bottom-up” approach focuses mostly on the very
detailed description of the different components of the system, while the “top-
down” approach looks for (uneducated) correlations between different vari-
ables of the system. Genome-scale metabolic models can be seen as a “middle-
out” strategy because they first delimit the genomic pool of the system, and
from there model the potential interactions of these components.

It should be clear that all modeling strategies are suitable for specific tasks,
but have limited capabilities for others, and so it is important to understand
the possibilities, limitations and underlying assumptions before embarking on
any of them. The direct comparison of genome-scale metabolic models with
other modeling approaches places them in the spectrum of modeling options,
and helps understand their value.

Bottom-up (kinetic) models versus genome-scale metabolic models

The structure of a kinetic model is actually quite simple. Suppose we have a
simple system with two branches (Figure 1.5).

We often assume an environment in which S is some infinite source with
a constant concentration (often referred to as an external metabolite [87, 88]),
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1. Introduction

e.g. glucose in the bloodstream, or a nutrient in a chemostat. Similarly, P1 and
P2, the products of this pathway, have constant concentrations and are also
external metabolites. X is an internal metabolite, the concentration of which
depends on the rates of production and consumption. In mathematical terms,
this can be described as:

dX
dt

= v1 − v2 − v3 (1.1)

The rates of the enzymes, vi, are a function ( f ) of the kinetic parameters p
(e.g. Michaelis-Menten constants Vmax and Km values) and concentrations of
the metabolites, in this case:

Vi = f (p,X,S,P1,P2) (1.2)

Thus, Eq 1.1 is a differential equation, the solution of which is a function
that describes the time-course of the concentration of X, i.e.:

X(t) = f (X0,p,S,P1,P2) (1.3)

The X0 indicates that the actual behaviour is dependent on the initial con-
centration of X. Since the rates depend on p, S, P1 and P2, so does X. If X is
computed at each time point, Eq 1.2 can be solved to find the rates of all the
enzymes in time, i.e. vi(t). Thus, such kinetic models can be constructed and
validated through time-series of metabolites and flux measurements.

Detailed kinetic models can be used to explore the dynamics of a system,
as well as the control structure of a pathway [89]. Once a model is available,
parameters and conditions (such as the concentration of S in our example) can
be altered to study biologically relevant properties, such as bistabilities [90],
oscillations [91], and robustness or homeostasis [92,93], just to mention a few.
In a practical sense, this understanding makes it possible to predict which
steps to enhance, or which feedbacks to remove, for a particular modification
of the pathway’s behavior (e.g. enhanced production of a valuable product, or
improving a diseased state). But even though there are examples of successful
applications of these types of kinetic models [94, 95], they face some serious
limitations.

First, the kinetic parameters p are very rarely available for all enzymes in
a pathway, although databases such as BRENDA [96] and Sabio-RK [97] are a
great help. However, these kinetic parameters are often measured at different
or non-physiological conditions, such as at the optimal pH of the enzymes,
instead of the physiological pH. As a result, it remains quite controversial to
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what extent the in vitro kinetics reflect the in vivo kinetics [98]. An alternative
to the in vitro kinetic parameter determinations is to estimate “in vivo kinetic
parameters” from time courses of metabolites after short time-scale perturba-
tions of the metabolic network [99–101]. Parameter estimation is a field onto
itself, and not an easy task. We refer to a recent review on the topic [102].

Second, kinetic models necessarily represent relatively small, isolated me-
tabolic pathways. Since these pathways are embedded in a large metabolic
network, the boundary conditions, i.e. the exchanges of information with the
rest of the system, become critically important to the success of the model
predictions. It was shown that including the boundaries explicitly, even with
uncertain parameter values, can improve the predictive power of the model
outcome [103]. Several approaches have been described that take the uncer-
tainty in kinetic parameters explicitly into account, generating an ensemble of
model outcomes that can be inspected for robust and more uncertain model
predictions [104–107]. Eventually such new approaches, together with further
developments in metabolomics research and computing power, may substan-
tially increase the size of systems for which kinetic models can be constructed
by reverse engineering [108, 109]. However, at the moment these approaches
scale poorly, and genome-sized ones are still a long way ahead.

Genome-scale metabolic models, on the other hand, do cover the total me-
tabolic potential that is encoded in the genome of an organism, but this comes
at a cost. They share with kinetic models the structure, i.e. the stoichiometry
of all reactions, but they leave out (almost) all of the kinetic details. This
is possible because many pathways, such as the one depicted in Figure 1.5,
when analyzed over a sufficiently long time will reach a steady state, i.e. a
state in which all internal metabolites will be balanced by the producing and
consuming reactions. In our example, this means that, in steady state:

dX
dt

= v1 − v2 − v3 = 0 (1.4)

Eq 1.4 basically states that the concentration of X is constant in time, as it
is balanced by its production and consumption rate. When the kinetics of the
reactions are known, we can compute the steady state concentration of X, and
the steady state rates through the enzymes, which we then, in steady state, call
fluxes:

X(t→∞) = Xss = f (p,S,P1,P2) (1.5)

Vi,ss = f (Xss,p,S,P1,P2) (1.6)
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LegendBA

Solution space

Capacity constraint (v1)

Capacity constraint (v2)

Capacity constraint (v3)

Extreme pathways

Figure 1.6: Illustration of the concept of solution space, and how mass-balance and capacity
constraints result in a bounded space of possible flux states. (A) The steady state solution space
is two-dimensional (a plane), because there are three unknowns (3 fluxes) and 1 equation: the
mass balance of X, i.e. Eq. 1.4. This plane stretches out to all directions, but is depicted only in
the positive quadrant for comparison with panel B. The arrows represent “extreme pathways”,
basis vectors that span the solution space, see [111] for a review on the topic. (B) Specific capacity
constraints on the fluxes v1, v2, and v3 turn the plane into a bounded space within which all
feasible flux states should lie. For each flux we have set capacity constraints, 0 ≤ vi ≤ vi,max.

Eq 1.4 leads to a set of linear equations that link the rates vi with each
other, which does not require the parameters p, S, P1 and P2. However, to
truly predict the rates vi or the steady-state metabolite concentration from the
conditions defined by S, P1 and P2, one does need this kinetic information, as
specified in Eqs 1.5 and 1.6. Via Eq 1.4 we only look at steady-state stoichio-
metric interrelationships between (steady-state) fluxes, nothing more. This
difference with kinetic modelling is crucial for understanding the limitations
of the analyses of genome-scale metabolic models discussed later on. Im-
posing steady-state relationships between rates (referred to as mass-balance
constraints [110], for obvious reasons), constrains the possible states the sys-
tem can be in only with respect to fluxes through the network, also referred to
as the solution space (illustrated in Figure 1.6).

The other type of constraint used in genome-scale metabolic modeling, is
called the capacity constraint. Such constraints also have a link with kinetics,
as they represent any limitation that can be imposed on individual rates. Such
limitations can be measured Vmax values that form an upper limit through the
reaction catalyzed by the enzyme. More often, it contains a constraint on the
directionality of a reaction, i.e. the assessment whether a reaction can work in
both directions under the physiological range of metabolite concentrations that
is assumed (or sometimes measured) in the organism under study [112–114].
Mass balance and capacity constraints together limit the solution space of all
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possible flux distributions (Figure 1.6).
The analysis of genome-scale metabolic models, applying mass-balance

and capacity constraints, is collectively named constraint-based modeling.
Note that a detailed kinetic model will predict a specific steady state with
fluxes that lie inside the solution space of the corresponding stoichiometric
network [115]. Leaving out the kinetic details in constraint-based modeling
comes at the cost of being able to predict the space of feasible states, but not
the specific state. Also, information about the sensitivity of the steady state to
parameters changes, as well as the trajectory by which this state is reached, is
not available through stoichiometry alone.

Top-down (biostatistical) models versus genome-scale metabolic
models

Despite the -omics data explosion, it is clear that for true systems-level un-
derstanding, the abundance of relevant data, unfortunately, is matched by an
abundance of less relevant data. This has to do with the inductive and open-
ended nature of the typical -omics experiment. There is nothing wrong with
this (well, a little perhaps [116]), and especially when done in a systematic
way with good experimental design, there are good methods to turn data into
knowledge [117, 118]. Statistics-based data analysis often gives qualitative
interaction networks, or candidate components (genes, transcription factors,
metabolites) that are calculated to be related to the phenomenon under study.
For many applications this may be sufficient, because these leads can be fol-
lowed up by validation experiments. Also, the -omics data can simply be used
for diagnostic purposes in biotechnology, for example to indicate a particu-
lar limitation or stress during a fermentation process [119, 120], or to predict
likely outcomes of cancer treatment [121], just to mention a few of the many
applications of recent years.

Attempts to enhance the purely statistical analyses by integrating different
data sets and a priori knowledge lie within the realm of integrative bioin-
formatics. We will not make an attempt to give a full account on that field,
but focus on where metabolic information was, or can be, used for integra-
tion. The construction of genome-scale models starts from the genome: using
bioinformatic approaches, the sequenced genome is scanned for regions that
encode proteins with enzymatic activity [122–124]. Based on the presence of
such genes, and supplemented with known biochemical and physiological
information, putative metabolic pathways can be inferred. Thus, genome-
scale metabolic models do not only contain reaction information (as was used
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above in comparison with kinetic models), but also the often many-to-many
relationships between genes, proteins and reactions [123]. The mapping of
genes to proteins and to reactions allows for integration of these levels. Tran-
scriptome data (gene level) can be mapped on metabolic maps in this way,
providing a visual, metabolic context for the interpretation of the transcrip-
tome data [125, 126]. By visual inspection, this may give leads to parts of
the metabolic network that are regulated. For instance, the need for CO2 in
fermentations of L. plantarum was identified in this way [127].

A computational counterpart of visual inspection was developed as re-
porter metabolites for proteome or transcriptome data [128]. In these analyses,
the differential expression of reactions that produce or consume a particular
metabolite is scored for each metabolite, and compared to an expected score
(based on chance alone). Those metabolites, whose surrounding reactions
change significantly, are then reporters for metabolic effects. CO2 would be
such a reporter metabolite in the L. plantarum example above. Reporter reac-
tions are computed in a similar vein from metabolome data [129].

Also, the metabolic association of genes, via their mapping to the reaction
network, has been used for functional association tests. Thus, genes close to
each other on the metabolic map were found to have a stronger correlation
in gene expression. Using constraint-based modeling, via the so-called flux
coupling analysis [130], this relationship was resolved with a much higher
functional resolution [131,132]. The key to this higher resolution is the appre-
ciation that two reactions in series in a linear pathway are stoichiometrically
fully coupled, whereas two reactions diverging from the same metabolite (such
as reactions 2 and 3 in Figure 1.5) are uncoupled, i.e. they can carry flux in
steady state independently from each other [132].

Thus, genome-scale metabolic models provide a “context for content” [133],
and they are very useful in -omics data integration, especially when results can
be visually interpreted (Chapter 5). Reconstructions of other networks, such
as transcription regulation networks [134], signal transduction networks [135]
or the translation machinery [136], allow for further extension of top-down
analyses in which biological data is integrated in a systematic way.

Flux balance analysis: the work horse of constraint based modeling

In many of the applications of genome-scale models, flux balance analysis
(FBA) is used, and this is by far the most popular constraint-based modeling
technique [137] (for a more extensive primer on FBA, we refer to [138]). FBA
uses optimization of a certain objective function to find a subset of optimal
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states in the large solution space of possible states that is shaped by the mass
balance and capacity constraints (see above, [110, 138]). We purposely state
subset of optimal states, because the flux value of the objective function is
unique, but the pathway distributions that give this optimal flux value may
not be. One who is interested in the set of flux distributions that give rise to an
optimal value of the objective function can perform a Flux Variability Analysis
(FVA) to check the uniqueness of the flux distribution [139]. FVA maximizes
and minimizes each reaction rate in the network at the optimal objective flux
value: The resultant range in fluxes gives an indication of how flexible the
network is in reaching the optimum.

Flux balance analysis basically tries to find a state (or sets of states) that
maximizes (or minimizes) some desired flux or linear combination of fluxes.
The approach is an optimization technique, and hence it implies that the
modeled system (e.g. organism) behaves optimally (by evolution). This may
limit the understanding of how microorganisms behave in experiments, as
they may not have had time to adapt to the environment. There are three
ways to deal with the optimality issue.

First, the optimality issue can just be ignored, simply because one does
not care about a specific, quantitative prediction. For example, one may want
to know whether the model can produce biomass, or some compound, not
necessarily how much. This goes for (synthetic) lethality predictions, and
predictions of evolution of metabolic networks.

Second, we can allow cells to adapt to their (constant) environment by
laboratory evolution experiments. Aiding this approach, FBA can be used
to predict evolutionary engineering outcomes, which may be guided by in
silico analysis of specific deletions to enhance productivity [140, 141]. It also
provides optimal yields with which experimentally obtained yields can be
benchmarked.

Third, extensions to FBA have been proposed to circumvent the need for
evolution, notably MOMA (minimization of metabolic adjustments [142]).
MOMA requires a well-defined reference state, and then tries to predict the
response of the network to a perturbation (change in external conditions, dele-
tion of a reaction) by assuming that the network is robust. Technically, it tries
to minimize the (Euclidian) distance between the reference flux distribution
and the new solution space (which has changed by the perturbation). In our
experience, the major problem with MOMA is that it weighs all fluxes equally
with respect to biological relevance, which is not very likely to be correct.
Moreover, the response is dominated by high fluxes. Thus, MOMA predic-
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tions in our hands do not produce proper specific predictions of fluxes, but it
has been useful to see if a certain perturbation is likely to cause severe growth
problems even though the optimal FBA solution seems fine (for an example,
see [143]).

ROOM (Regulatory On/Off Minimization) has been proposed as an alter-
native that does not suffer from these issues, as it is limited (by design) to
turning fluxes “on” or “off” in an attempt to mimick regulatory activity in
the cell [144]. However, it too does not see extensive use (its ample citations
are largely from technology-oriented papers, a quirk shared by many other
systems biology papers), perhaps because an attempt to study a mathematical
representation (FBA model) of a biological system using another biological
model (the ROOM extension, or MOMA for that matter) seems too far-fetched
compared to solving a mathematical issue using mathematics.

In this light, it is also interesting to mention CoPE-FBA (Comprehensive
Polyhedra Enumeration FBA), which is an example of the latter approach, and
enables more general statements about the optimal flux space [145]. Specif-
ically, CoPE-FBA has shown that in many biological systems that seem to
have highly variable solution spaces, this variability is due to a rather small
(indeed: manageable!) number of components. Components that might oth-
erwise have been lost in a forest of flux values can then be followed up on in
an attempt to understand their biological relevance to the system.

Clearly, these computational analyses of metabolic networks cannot be
performed by hand, and Microsoft Excel — the biologist’s staple — does not
scale to the genome level. This need for community-wide standards and
specialist software has resulted in the development of a standard language for
describing metabolic models (SBML [146]), as well as in software facilitating
their analysis (e.g. PySCeS [147] and the COBRA Toolbox [148]). We have
expanded on this work by producing several tools that (further) facilitate the
manipulation and visualization of genome-scale models. As this is described
in detail in Chapters 4–5 of this thesis, we will not go into the topic of software
here.

FBA predicts rates only through yield maximization

If one does want to optimize a model to obtain specific flux distributions, how-
ever, one requires a sensible objective function, and here some confusion and
controversy has arisen in the literature. In a recent study, different objective
functions were tested for the extent to which they could predict actual flux
states under different conditions [149]. The study demonstrated that different
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objective functions were needed to describe the flux states under different con-
ditions. Notably, under energy (or carbon) limitation, optimization of biomass
yield appeared to be the best objective function. This is in line with earlier
studies in which the biomass formation function was taken as objective to
predict functional states [150].

However, many microorganisms and cancer types display overflow me-
tabolism, which is a wasteful lifestyle in terms of ATP generation and conse-
quently, biomass yield. This behavior cannot be predicted by FBA, because it
predicts rates through optimal yields. It could only be described by including
additional capacity constraints on the oxidative phosphorylation pathways in
the corresponding metabolic networks [151, 152].

It is important to fully appreciate the point that FBA predicts rates through
optimal yields, and not rates directly. If we take our example from Figure 1.5,
and suppose we want to maximize the production rate of P1 from S, we may
formulate the FBA problem as:

max v2

given :

mass balance constraint:

v1 − v2 − v3 = 0

capacity constraints:

0 ≤ v1 ≤ 10

−∞ ≤ v2 ≤ ∞

0 ≤ v3 ≤ ∞

(1.7)

The solution is easy in this case: v1 should be 10, v2 should be 10, and v3

should be 0. But note that the rate of v2 is fully dictated by the constraint on
v1. We could write the rate of v2 as:

v2 = v1 · YP1,S (1.8)

where YP1,S is the yield of P1 on S (1 in this case). Since v1 is fixed by the
capacity constraint, the only way to maximize v2 is to maximize the yield; this
is also fixed in this simple case, but this is not so in larger systems where the
capacity constraint is always required to bound the problem. For larger, real
genome-scale models, this argument therefore remains [88]: Since the solution
space is bounded by an input flux, FBA finds an optimal objective flux by
optimizing the yield on the incoming substrate. Hence, if in a model there

27



1. Introduction

are two options to make ATP from glucose, fermentation (low ATP yield)
and respiration (high ATP yield), optimization of ATP production rate will
necessarily be achieved by respiration. Therefore, when applying biomass
optimization in FBA, the underlying biological assumption is that biomass
yield maximization was the strategy through which the organism has reached
its fitness. It is clear that there are also other strategies that lead to fitness,
and hence, the validity of FBA, using biomass yield as objective function, is
organism and condition specific [149, 153, 154].

Applying genome-scale models to the study of cancer

Before we can fully appreciate the value and validity of biomass equations
in genome-scale applications, we must first assess the value and validity of
these applications in general. The use of GSMMs in the study of cancer
got underway only fairly recently (in 2007) with the publication of a first
reconstruction (“Recon 1”) of human metabolism [155], although the state of
technology had been ready for it for a while at the time. Other genome-
scale models of human metabolism also appeared around this time, e.g. the
Edinburg Human Metabolic Network (EHMN) reconstruction [156], and a bit
later the liver-specific HepatoNet1 reconstruction [157]. While their usefulness
goes undisputed, they never attained the popularity of Recon 1.

HepatoNet1 did mark a trend towards the generation of tissue-specific
metabolic models. Ironically, while HepatoNet was extensively manually
curated, subsequent studies of tissue-specific models employed automated
approaches to create models and make statements about the function of specific
cell types (e.g. INIT [158], mCADRE [159], and Recon 2 [50], the successor
to Recon 1). The value of these automatically generated models turned out
limited outside the scope within which they were created, and they saw limited
to no reuse after publication. Nevertheless, the availability of “complete”
models of human metabolism enabled a multitude of studies of human cellular
physiology health and disease, and cancer was an obvious research topic this
new generation of models could be used for.

For instance, Recon 1 was combined with information on targets of existing
drugs, to investigate combinations of drugs that could specifically target cancer
cells based on the disease’s metabolic properties [160]. Other studies delved
into the properties of the Warburg effect at a scale that used to be infeasible,
by looking at the concentrations of external metabolites and the implications
they could have on the internal flux distribution [45]. With some extensions to
the FBA framework, even strictly metabolic explanations of the Warburg effect
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were proposed [161, 162]. Though interesting in their own right as additions
to the repertoire of FBA-related techniques, results of this approach have not
been universally accepted as conclusive answers to the Warburg conundrum.
One could question whether their authors even intended them to be: As we
discussed above, it is likely that the workings of the Warburg phenotype
include both metabolic as well as signaling components.

In any case, the approaches outlined above are illustrative of the broad
array of research questions that is included in the scope of genome-scale stoi-
chiometric modeling in the context of cancer. But tacitly, an unasked question
underlies the current GSMM cancer modeling effort. The choice of biomass
production as an objective function largely goes uncontested [163], but for
some reason, so do the contents of the biomass equation. While there are
often no suitable alternatives to the former [163], the latter is subject to a pe-
culiar custom where, when an experimentally determined biomass equation
is lacking, an amalgam of partial biomass compositions from various (related)
species is employed. Examples of this can be found in the biomass equations
that were included in various (and otherwise very helpful) reconstructions of
human metabolism [50, 164]. In these models, data from human, mouse, rat,
and dog were used in various combinations. Other models of human metabo-
lism omit the biomass equation altogether, citing a lack of data and/or a lack of
necessity [155,158]. To start ending this impasse, we set out experimentally de-
termine of the biomass composition of human leukocytes and leukemia cells.
Armed with this first “fully human” biomass equation, we can then assess the
quality of earlier FBA results, and determine the relative importance of the
accuracy of the biomass objective function. The results of this endeavor are
described in Chapter 6 of this thesis.

Aim and outline of this thesis

It should be clear by now that the biology of cancer has many interconnected
facets. In systems biology, we aim to take a step back and study the bigger
picture, to see how it all fits together, but typically end up studying only a
single subpart in detail.

In this thesis, I instead describe the study of several (sub)systems that
contribute to cancer. By starting at microRNA-mediated regulation, a high
level of abstraction, and moving via signaling to metabolism and growth, the
eventual goal of many signaling processes in cancer, we encounter examples
of most of the systems that make the difference between health and disease.
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1. Introduction

Specifically, in the case of microRNAs, we looked at the properties and
implications of the miR-21 isoform landscape, which we characterized using
next-generation sequencing (Chapter 2). In Chapter 3, we then apply a sys-
tems biology approach to a more traditional signaling challenge: elucidating
chemokine signaling pathways that are thought to govern cancer progression
on the regulatory level.

The step between these systems and growth is metabolism, but to ade-
quately study metabolism and growth from a genome-wide perspective, ad-
equate tools for dealing with genome-scale models must first be available.
In Chapter 4, we describe the development of FAME, a web-based tool that
allows the manipulation, simulation, and visualization of these large models.
In Chapter 5, we present a comprehensive, interactive, and extensible map of
metabolism, the availability of which is instrumental in the interpretation of
metabolism-related data – in our case, modeling results.

Then, in Chapter 6, we can apply these tools to study the impact of the
composition of human biomass to the modeling of human (cancer) cells. Our
experimental determination of the biomass composition of human leukemia
cells allows an unprecedented insight into the consequences of this systems
biological staple on modeling results, and on their relationship to the system
under study. The thesis is concluded by a General Discussion, in which these
chapters are viewed in the context of the current state of the art in systems
biology, and in the context of the path towards a better understanding of
cellular function in health and disease.
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Chapter 2

PAPD5-mediated 3’ adenylation and
subsequent degradation of miR-21 is
disrupted in proliferative disease

In collaboration with Helena Persson, Jay W. Shin, Yuri Ishizu, Inga Newie, Rolf Søkilde, Shannon M. Hawkins,
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2. Isoform-specific regulation of oncomiR miR-21

Background

The advent and subsequently widespread use of next-generation sequencing
technology has enabled the in-depth examination of the small RNA comple-
ment of cells. Among these small RNAs are microRNAs (miRNAs), a class of
∼22-nt RNAs that was discovered about twenty years ago [165]. An impressive
amount of miRNA sequencing data is now publicly available, which has aided
the discovery of novel miRNAs, miRNA function, and their biogenesis [166].

In the canonical miRNA generation pathway, RNA polymerase II or III
produces the primary miRNA transcript from which the pre-miRNA hairpin
is excised by DROSHA. The pre-miRNA is exported to the cytoplasm where it
is cut by DICER1 to release a double-stranded RNA duplex consisting of the
mature miRNA and the passenger strand. Whereas the passenger strand is
usually rapidly degraded, the mature miRNA is loaded as a single-stranded
RNA into an Argonaute protein to form the RNA-induced silencing complex
(RISC) [167, 168]. Within RISC the miRNA binds to partially complementary
target sites in messenger RNAs, located preferentially in the 3’ UTR, to in-
hibit translation and induce degradation of the target mRNA. Base pairing
to nucleotides two to eight of the miRNA, the so-called seed sequence, is
particularly important for target gene recognition.

In recent years, deep-sequencing libraries of small RNAs have revealed
the existence of a large number of sequence variants both in pre-miRNAs
and in mature miRNAs. In pre-miRNAs, sequence variations associated with
adenosine-to-inosine (A-to-I) editing have been shown to affect their process-
ing [169, 170]. Similarly, polyuridylation mediated by the uridylyl transferase
ZCCHC11 of the 3’ ends of pre-miRNAs of the let-7 miRNA family can sup-
press their maturation [171–174].

Sequence variations in mature miRNAs are referred to as isomiRs [175–
177]. IsomiRs may be produced by differential excision by DICER1, which
can lead to variations in the 5’ and 3’ ends of the mature miRNA [178]. This
can alter their affinity for Argonaute proteins [179] and also, in case of 5’ end
variations, their target specificity [180].

IsomiRs can also be generated by non-templated addition of A and U nu-
cleotides to their 3’ end [175,181]. Although several enzymes have been found
to govern 3’ nucleotide addition to mature miRNAs [182], for most mature
miRNAs 3’ adenylation is mediated by PAP associated domain containing 4
(PAPD4, also known as GLD2) [181]. Whereas mature miR-122 is selectively
stabilized by PAPD4-mediated adenylation [183], it remains unclear whether
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Figure 2.1: The upper image shows the structure of pre-miR-21 as predicted by mfold [192]. The
canonical miR-21 and miR-21+C isomiRs are highlighted in blue and burgundy, respectively. The
definitions used in this chapter appear below the structure.

in general adenylation of the 3’ end of mature miRNAs increases their stabil-
ity [181].

MicroRNAs are involved in the regulation of many cellular processes in-
cluding developmental and oncogenic pathways [167, 184]. The oncogenic
microRNA (oncomiR) miR-21 (Figure 2.1) has been of particular interest be-
cause of its importance in human diseases such as cancer [185–187], car-
diovascular disease [186, 188], and inflammatory skin disease [189], with
a role in cell cycle control [190], apoptosis [187] and metastasis [185, 191].
Small RNA sequencing data from The Cancer Genome Atlas (TCGA) (http:
//cancergenome.nih.gov/) across a panel of 10 cancer types showed that miR-21
is the most highly expressed miRNA in cancer (Figure S1A), with an expression
level significantly elevated in tumor samples compared with the correspond-
ing normal samples (Figure S1B). Due to its biological and clinical importance,
miR-21 is by far the most widely studied miRNA (Figure S1C). Despite this, its
isomiR composition and the functional significance of specific miR-21 isomiRs
remain poorly understood.

Across a broad collection of small RNA deep-sequencing libraries, we
found that two mature isomiRs of miR-21 are highly expressed, with their rel-
ative expression ratio strongly cell-type dependent. We show that the longer
of the two isomiRs is the primary product of DICER1 cleavage, and that the
shorter isomiR is produced by 3’-to-5’ degradation of miR-21 by a tailing-
and-trimming process involving the nucleotidyl transferase PAP associated
domain containing 5 (PAPD5) and the poly(A)-specific ribonuclease PARN.
We then show that this degradation pathway is disrupted in most cancers,
as well as in the non-cancerous proliferative skin disease psoriasis. This pro-
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2. Isoform-specific regulation of oncomiR miR-21

vides evidence for a pathway in which PAPD5, a tumor suppressor previously
shown to stabilize tumor protein 53 (TP53) mRNA [193], also regulates on-
comiR degradation.

Results

MicroRNA-21 has two prominent isoforms

We produced a set of small RNA libraries from MCF7 breast cancer cells (SI
Materials and Methods and Figure S2) and found that miR-21 accounted for
more than 39% of total miRNA expression in this cell line (Figure S3). Almost
half of the overall miR-21 expression was due to a 23-nucleotide isomiR, which
we refer to as miR-21+C, that has an additional cytosine at the 3’ end compared
with the 22-nucleotide canonical miR-21 isomiR registered in miRBase [194]
(Figures 2.1, S3). As this cytosine is encoded in the genome, miR-21+C may
be produced directly by DICER1 processing of the pre-miR-21 hairpin struc-
ture. Reanalyzing small RNA data previously produced at our laboratory from
THP1 monocytic leukemia cells [195] revealed abundant expression of both
isomiRs also in this cell line (Figure S3). Previous Northern blotting experi-
ments for miR-21 in RNA obtained from MCF7, HeLa, and HT29 cells [178]
confirm the existence of both a 22 nucleotide and a 23 nucleotide mature
miRNA in these cells.

MicroRNA-21+C is the primary product of pre-miR-21 cleavage by
DICER1

To understand the mechanism by which these two isomiRs are produced,
we first considered the possibility that DICER1 itself is able to generate both
isomiRs by alternative excision from the pre-miRNA hairpin. However, pre-
viously only a single 23 nucleotide mature miRNA was observed after in
vitro cleavage by DICER1 [196, 197], suggesting that at least in vitro DICER1
does not produce the 22 nucleotide canonical miR-21 isomiR. Furthermore,
although we would expect such alternative excision to be accompanied by a
variation in the 5’ starting nucleotide of the miR-21 passenger strand sequence,
we detected only a single dominant miR-21 passenger strand sequence both
in our MCF7 as well as in our THP1 sequencing data (Figures 2.1, S4). Se-
quencing reads of the loop section of the pre-miR-21 hairpin structure are also
consistent with excision by DICER1 of miR-21+C and do not show evidence
of direct excision of the 22-nucleotide canonical miR-21 isomiR (Figure S4).
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Association of human DICER1 with its partner protein TAR (HIV-1) RNA
binding protein 2 (TARBP2, also known as TRBP) has previously been shown
to alter its pre-miRNA cleavage pattern in vitro [196]. However, Northern
blots revealed only a single mature miRNA band of the same size after in vitro
cleavage of pre-miR-21 by either DICER1 or the TARBP2-DICER1 complex
[196], indicating that the existence of two distinct miR-21 isomiRs is not due
to association of DICER1 with TARBP2.

Finally, we note that the 23-nucleotide isomiR miR-21+C has a 2-nt over-
hang at its 3’ side with respect to the 5’ end of the passenger strand (Figures 2.1,
S4), which is biochemically favorable and is typically seen in mature miRNA
excision by DICER1 [198]; in contrast, excision of the 22 nucleotide canonical
miR-21 isomiR would yield a single nucleotide overhang. We conclude that the
miR-21+C isomiR is the primary product of DICER1 cleavage of pre-miR-21
both in vitro and in cell lines.

MicroRNA-21+C is subject to cell-type specific 3’ adenylation

As DICER1 processing of pre-miR-21 only produces the 23 nt miR-21+C
isomiR, we hypothesized that the canonical 22 nt mature miR-21 isomiR may
instead be produced by 3’-to-5’ trimming of the 23 nt miR-21+C isomiR. Pre-
viously, stimulation of miR-21 degradation in HeLa cells by transfection of
miR-21-specific antagomiRs was shown to not only result in 3’-to-5’ trimming
of this miRNA, but also in its 3’ tailing by one or more nucleotides [199]. In
most cases, a single adenosine was added to the 3’ end of miR-21+C, giv-
ing rise to a 24 nt miR-21+CA isomiR. This adenosine is not encoded in the
genome and is therefore likely to have been added posttranscriptionally to
miR-21+C. In agreement with these previous results, we found that the miR-
21+CA isomiR comprised between 1% and 10% of the miR-21 sequences in
our MCF7 and THP1 sequencing data (Figure S3).

To gauge whether these three isomiR forms are a general property of miR-
21 expression in different cells and organisms, we examined publicly available
sequencing data sets from human, rhesus macaque, mouse, rat, cow, platypus
and Japanese flounder (Table S1). The examined data included both healthy
and diseased samples, as well as primary tissue and cell lines, and between
them cover approximately 450 million years of evolution. Remarkably, miR-
21, miR-21+C, and miR-21+CA were found in each of these data sets, with
their abundances and relative counts varying between cell types (Figure S3).

35



2. Isoform-specific regulation of oncomiR miR-21
Δ

 [a
de

ny
la

tio
n 

ra
tio

] (
%

)
-10

lo
g(

p-
va

lu
e)

ZFR PAPD4 PAPD5 PAPD7 ILF3

A
16

12

8

4

0

0

-20

-40

-60

-80

0

2

4

Δ
 [a

de
ny

la
tio

n 
ra

tio
] (

%
)

-10
lo

g(
p-

va
lu

e)

-10

0

20

40

C

CNOT6L ERI1 PAN3 PARN RNASEL EXOSC4 EXOSC10

THP1
MCF7

B

Negative control PAPD5 knockdown

Δ
 [m

iR
-2

1 
ex

pr
es

si
on

] (
%

) 100

80

60

40

20

0

-20

-40

p = 0.029

Figure 2.2: (A) Deep-sequencing data of small RNAs from THP1 cells upon knockdown of candi-
date adenylating enzymes showed a large and highly significant decrease in the adenylation ratio
of miR-21+C after knockdown of PAPD5, which was confirmed in a replicate PAPD5 knockdown
experiment. (B) The expression level of miR-21, as measured by qPCR and normalized against
the expression of the spliceosomal RNA U6, increased significantly upon knockdown of PAPD5
in THP1 cells. (C) Upon knockdown of exoribonuclease PARN, the miR-21+C adenylation ratio
increased significantly compared with NC both in THP1 (two replicates) and in MCF7 (three repli-
cates). In THP1, the miR-21+C adenylation ratio also increased significantly upon knockdown of
PAN3.

PAPD5 adenylates the 3’ end of miR-21

Previously, we investigated nontemplated 3’ nucleotide additions to miRNAs
by analyzing sequencing data from THP1 cultures in which the nucleotidyl
transferases ZFR, PAPD4, PAPD5, PAPD7, and ILF3 were knocked down by
RNA interference [181]. We re-analyzed these data and found that knocking
down PAPD5 dramatically decreases the adenylation ratio of miR-21+C (by
74%, p = 2.1e-11; Figure 2.2A). This finding surprised us, as previously most
miRNA 3’ adenylation events appeared to be mediated by PAPD4 and few,
if any, by PAPD5 [181]. We therefore repeated the PAPD5 knockdown exper-
iment, which again showed a significant decrease in the miR-21+C adenyla-
tion ratio (by 71%; p = 2.6e-18; Figure 2.2A). MiR-142-3p was the only other
miRNA that consistently showed a significant decrease in adenylation ratio in
both replicates of the PAPD5 knockdown experiment (Figure S5).

In vitro, PAPD5 has previously been shown to be an RNA-specific nu-
cleotidyl transferase that can add adenosine to the 3’ end of a variety of oligori-
bonucleotides [200]. To evaluate if also in cells PAPD5 acts directly on miR-21,
we analyzed previously published photoactivatable-ribonucleoside-enhanced
cross-linking and immunoprecipitation (PAR-CLIP) sequencing data obtained
from HEK293 human embryonic kidney cells [200, 201]. These data revealed
a statistically significant fraction of miR-21 cross-linking to PAPD5 in two in-
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dependent replicates (p = 3.7e-4 and p = 0.0072, respectively; SI Materials and
Methods and Table S2), suggesting that the decrease in miR-21 adenylation
observed in the PAPD5 knockdown libraries is a direct effect.

MicroRNA-21+C is trimmed at the 3’ end following its adenylation

In human and murine liver cells, 3’ adenylation mediated by the nucleotidyl
transferase PAPD4 has been shown to stabilize miR-122 [183]. In contrast,
PAPD5 was recently found to aid in the maturation of SNORA63 and other
small nucleolar RNAs in a pathway where oligoadenylation by PAPD5 is fol-
lowed by 3’-to-5’ trimming by the exonuclease PARN [202,203] (Figure S6). In
all sequencing data sets shown in Figure S3, we found miR-21+C transcripts
with multiple adenosines added to their 3’ end. We hypothesized that miR-
21+CA is similarly subject to 3’-to-5’ trimming, producing the 22-nt canonical
miR-21 isomiR, which may subsequently be trimmed further in the 3’-to-5’
direction as part of a miR-21 degradation pathway. In all libraries, the vast
majority of sequenced miR-21 reads shorter than the mature miRNA aligned
to the 5’ end of miR-21, indicating that degradation of miR-21 indeed predom-
inantly proceeds in the 3’-to-5’ direction. We regarded such 5’-matching reads
shorter than 23 nucleotides as putative miR-21 degradation products. In both
PAPD5 knockdown libraries, we found a significant decrease in the counts of
these degradation products compared with negative control (p = 1.2e-4 and
p = 1.0e-5), suggesting that PAPD5-mediated adenylation of miR-21+C in-
deed promotes its 3’-to-5’ degradation (Figure S7A). In agreement with such a
degradation pathway, quantitative RT-PCR (qRT-PCR) showed a significantly
higher expression level of miR-21 in THP1 cells upon PAPD5 knockdown
compared with NC (p = 0.029; Figure 2.2B).

To assess whether expression of PAPD5 is sufficient to stimulate adeny-
lation and trimming of miR-21, we overexpressed the protein in THP1 and
MCF7 cells using a lentiviral vector (SI Materials and Methods; Figure S8A)
and profiled their small RNAs by deep-sequencing. Both in THP1 and in MCF7
cells, we found an increase in the abundance of miR-21 degradation products
two weeks post PAPD5 transduction compared with NC (Figure S7B, S7C).
Confirming this observation we detected higher levels of miR-21 relative to
miR-21+C (Figure S7D). However, we failed to confirm the accumulation of
degradation products using RNA samples extracted at an earlier time point
posttransduction (Figure S7E).
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2. Isoform-specific regulation of oncomiR miR-21

The exoribonuclease PARN mediates miR-21 degradation

To identify the enzyme responsible for 3’-to-5’ trimming of miR-21, we se-
lected seven known exoribonucleases (CNOT6L, ERI1, PAN3 [poly(A) specific
ribonuclease subunit], PARN, RNASEL, EXOSC4, and EXOSC10), knocked
down their expression in THP1 cells using RNA interference (Figure S8B and
Table S3), and sequenced their small RNA fraction. The sequencing data in-
deed revealed a significant increase in the adenylation ratio of miR-21+C upon
PARN knockdown (p = 2.2e-5 and p = 0.041; Figure 2.2C) as well as upon PAN3
knockdown (p = 0.013 and p = 0.0086; Figure 2.2C).

Regarding 3’-to-5’ trimming of miR-21 as a degradation process, we define
the ratio of the miR-21 count to the miR-21+C count as the degradation ratio
(Figure 2.1). Although both replicates of the PARN knockdown showed a
decrease in the degradation ratio (Figure S7F), we did not observe a decrease
of this ratio upon PAN3 knockdown in either replicate (Figure S7G). This
suggests that PARN, rather than PAN3, is the main exoribonuclease mediating
3’-to-5’ trimming and further degradation of miR-21. We further note that in
both replicates of the PAN3 knockdown, on average, the adenylation ratio
increased across all miRNAs (p = 6.2e-4 and p = 1.6e-5), suggesting that PAN3
acts as a deadenylating enzyme on a wide variety of miRNAs. No such effect
was found for PARN, indicating that it acts specifically on miR-21.

To verify this role of PARN in a different cell type, we repeated its knock-
down in MCF7 cells. Each of the three replicates again showed a significant
increase in the miR-21 adenylation ratio (p = 0.027, p = 0.037, and p = 0.043;
Figure 2.2C), as well as a decrease in the degradation ratio (Figure S7H).

PAPD5-mediated adenylation affects regulation by miR-21

To determine the downstream regulatory consequences of PAPD5-mediated
adenylation and PARN-mediated degradation of miR-21+C, we analyzed gene
expression in the PAPD4 and PAPD5 knockdown samples in THP1 cells using
mRNA microarrays. Knockdown of PAPD4 and PAPD5 was confirmed both
by qPCR and by the microarray expression profiling itself (Figure S8C, S8D).
Target genes for miR-21 predicted by TargetScan [204,205] showed significant
down-regulation in the PAPD5 knockdown samples compared with the NC
(Figure 2.3A; p = 0.002). We also find a down-regulation of target genes upon
PAPD5 knockdown if we restrict ourselves to confident target predictions by
requiring a TargetScan context score lower than -0.2 (Figure 2.3A; p = 0.014). In
addition, the reduction in the expression of genes with at least two predicted
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Figure 2.3: Gene expression profiling in THP1 cells was performed using microarrays for two bio-
logical replicates each for the NC, the PAPD4 knockdown condition, and the PAPD5 knockdown
condition. (A) Compared with NC, predicted target genes of miR-21 were significantly downreg-
ulated upon knockdown of PAPD5, but not upon knockdown of PAPD4. This observation holds
if more stringent selection criteria for miR-21 target genes are applied, such as requiring a context
score lower than -0.2 or requiring multiple target sites for the same. Asterisks indicate statistically
significant differential expression. Error bars represent the SDs of the estimated mean percentage
change between the knockdown condition and the NC. (B) A heat map view of the expression
data confirms that the profiled genes cluster by experimental condition.

miR-21 target sites was about twice as large compared with that of all predicted
miR-21 target genes (Figure 2.3A; p = 0.029). None of these sets of genes
showed a statistically significant down-regulation upon PAPD4 knockdown,
demonstrating that the effect on miR-21 target genes is specific for PAPD5.
Hierarchical clustering of the microarray expression data with respect to the
knockdown conditions reveals distinct clustering into an NC cluster, a PAPD4
knockdown cluster, and a PAPD5 knockdown cluster (Figure 2.3B).

Dysregulation of the miR-21 degradation pathway in proliferative
disease

To evaluate the relevance of the miR-21 degradation pathway in disease, we
analyzed RNA sequencing and small RNA sequencing data from clinical sam-
ples from TCGA (http://cancergenome.nih.gov/). We applied our analysis to
the 10 cancer types for which the TCGA data are currently publicly available,
and for which both tumor and normal samples have been profiled (Figure 2.4).
Across most cancer types, both the miR-21 degradation ratio (Figure 2.4A) and
the miR-21 adenylation ratio (Figure 2.4B) were significantly lower in the tu-
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Figure 2.4: Across a wide variety of cancers, the degradation ratio (A) and the adenylation ratio
(B) of oncomir miR-21+C is significantly lower in tumor samples compared with normal samples.
A reduced degradation ratio (C) and adenylation ratio (D) is also observed in psoriasis, which is
similarly characterized by elevated expression levels of miR-21 (E). Error bars indicate the SD of the
estimated mean; Kruskal-Wallis p-values of the difference between healthy and disease samples
are shown for each disease type. (F) As shown here for lung squamous cell carcinoma (LUSC),
in most cancers the PAPD5 expression level is positively correlated with the miR-21 adenylation
ratio, which in turn is negatively correlated with the miR-21 expression level (G). Similarly, in
psoriasis the miR-21 adenylation ratio is negatively correlated with the miR-21 expression level
(H). “Involved” refers to psoriatic skin samples, “uninvolved” to samples of skin from psoriatic
patients that are not affected by psoriasis, and “normal” to skin from healthy donors. Dashed
lines indicate the 95% confidence interval of the regression line. The Spearman correlation and its
corresponding p-value are shown. MicroRNA-21 expression levels are normalized to the overall
miRNA expression level in each sample; PAPD5 expression levels are evaluated as reads per
kilobase of transcript per million mapped reads (RPKMs). cpm, counts per million miRNAs.

mor samples compared with the corresponding normal samples; there were
no significantly elevated degradation ratios or adenylation ratios in any of
the cancer types. Consistent with PAPD5-mediated adenylation of miR-21
leading to its degradation, across most cancer types we found a statistically
significant positive correlation between PAPD5 expression level and adenyla-
tion ratio (Figures 2.4F, S9A), and a significant negative correlation between
the adenylation ratio of miR-21 and its expression level (Figures 2.4G, S9B).
The remaining correlation values were not significantly different from zero.
Combined, the above indicates that disruptions in the degradation pathway
of miR-21 are a hallmark of cancer across a wide range of tissues.

We then asked whether disruption of the miR-21 degradation pathway
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is relevant in non-cancerous proliferative diseases such as psoriasis, a skin
disease characterized by increased proliferation of basal cells in the epidermis
[206]. Small RNA-sequencing data consisting of 67 patient samples of psoriatic
and normal skin previously revealed [189] that at the molecular level psoriasis,
like cancer, is characterized by elevated expression levels of miR-21 (Kruskal-
Wallis p = 8.8e-11; Figure 2.4E). Analyzing the miR-21 isomiR counts across
these samples showed that the adenylation ratio is negatively correlated with
the miR-21 expression level (r = -0.71; p = 9.6e-12; Figure 2.4H), with the miR-
21+C degradation ratio and adenylation ratio significantly lower in psoriasis
samples compared with unaffected skin (Kruskal-Wallis p = 2.5e-8 and p =

1.1e-9, respectively; Figure 2.4C, 2.4D). Hence, we conclude that dysregulation
of the miR-21 degradation pathway is not limited to cancer, but can also occur
in other types of proliferative disease.

Discussion

In recent years, several posttranscriptional mechanisms have been uncovered
that enable the fine-grained regulation of individual miRNAs beyond the
canonical maturation pathway [167, 207, 208]. Next-generation sequencing of
miRNAs has revealed a wide variety of miRNA variants that may be produced
by differential excision by DICER1 or nucleotide additions to the 3’ ends of
miRNAs or their precursors [175, 209]. Multiple nucleotidyl transferases, in-
cluding PAPD4 and PAPD5, can mediate 3’ adenylation of mature miRNAs
in human [181, 182]; these 3’ additions have been shown to be a physiological
phenomenon rather than an artifact of library preparation and are specific for
different miRNAs [182]. However, the biogenesis and biological significance of
miRNA 3’ modifications as well as isomiRs with distinct 3’ ends are generally
poorly understood.

Whereas mature miRNAs generally are stable and tend to persist even if
the processing enzymes are depleted by RNAi [210,211], examples are known
in which specific miRNAs are degraded rapidly [212], and sequence-specific
tailing and trimming was recently reported as a mechanism of miR-27a/b de-
pletion in mouse [213]. Our results show that 3’ adenylation of oncomiR
miR-21 by the nucleotidyl transferase PAPD5 may similarly lead to its degra-
dation by targeting it for 3’ end trimming by exoribonuclease PARN. This
enzyme thus is a human ortholog of the exonuclease Nibbler, which was re-
cently discovered to trim the 3’ ends of miRNAs in Drosophila [207,208]. PARN
was recently also shown to trim the 3’ arm of human pre-miR-451 in the 3’-to-5’
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2. Isoform-specific regulation of oncomiR miR-21

direction as the final step in the maturation pathway of this miRNA [214].
In liver cells, an additional biological function of PAPD5 was recently dis-

covered in a regulatory pathway affecting the tumor suppressor TP53 (also
known as p53) [193]. In this pathway, PAPD4 stabilizes the microRNA miR-
122 by 3’ adenylation [183], thereby stimulating translational repression by
miR-122 of the cytoplasmic polyadenylation element-binding protein CPEB.
This protein binds to the 3’ UTR of TP53 mRNA and recruits PAPD5, which
modulates the stability and translation of the TP53 mRNA by polyadenylating
its 3’ end. Hence, PAPD5 acts as a tumor suppressor by regulating translation
of TP53 and thus promoting cellular senescence (Figure 2.5; [193]). Interest-
ingly, PARN was recently shown to trim polyadenylated TP53 mRNA [215],
which suggests a combined role for PAPD5 and PARN both in the regulation
of TP53 abundance and in regulation of miR-21 after DICER1 cleavage.

Enzymatic addition of adenosine or uracil nucleotides to the 3’ end of
miRNAs may in general modulate their stability and thereby play a role in
regulating their abundance [184]. Whereas miR-122 was previously shown to
be stabilized by PAPD4-mediated adenylation of its 3’ end [183, 184], we find
instead that 3’ terminal addition by PAPD5 to miR-21 stimulates its degra-
dation. This suggests the existence of a regulatory network of 3’ nucleotidyl
transferases and exoribonucleases targeting specific mature miRNAs to en-
hance or prevent their degradation. As evidenced by our analysis of small
RNA-sequencing data from clinical samples, the degradation pathway of miR-
21 we identified is frequently disrupted across a wide variety of proliferative
diseases, underscoring the importance of this regulatory network in human
health and disease.

Materials and methods

A detailed description of the materials, data sources, and experimental and analysis
methods is provided in SI Materials and Methods.

Analysis of miR-21 isoforms in sequencing data

For human, the mature miR-21 sequence listed in miRBase [194] is the common 22 nt
isoform UAGCUUAUCAGACUGAUGUUGA. This 22 nt sequence and its 3’ down-
stream sequence are conserved in all species we analyzed, except for Japanese floun-
der [219], for which the mature sequence is UAGCUUAUCAGACUGGUGUUGG but
the downstream sequence is the same as for the other species.
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Figure 2.5: PAPD5 prolongs the life of the mRNA encoding tumor suppressor TP53 by polyadeny-
lation. By adenylating miR-21+C and thus inducing its degradation by PARN, PAPD5 prevents
the oncomiR from repressing other tumor suppressors. Once associated with an Argonaute pro-
tein, miR-21 isomiRs engage in the promotion of a variety of classical cancer hallmarks [14], such
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transferases are represented as yellow hexagons; TP53, a key transcription factor involved in
tumor suppression, is represented by a green rounded rectangle; the exoribonuclease PARN is
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miR-21 and miR-21+C into the RISC complex is denoted by arrows. Adenylated miR-21+C un-
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degradation products.
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2. Isoform-specific regulation of oncomiR miR-21

Statistical analysis of adenylation/degradation rates and
overrepresentation of degradation products

The enzyme knockdown conditions were analyzed separately by comparing the se-
quence counts for isomiRs in the knockdown condition to their sequence counts in
the negative control to estimate the common dispersion of the negative binomial dis-
tribution [220] using the maximum likelihood method. We then used the likelihood
ratio test [221] to calculate the statistical significance of differences in adenylation ratios
between each knockdown condition and the negative control for each miRNA.
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3. Differential CXCR4/CXCR7/CXCL12-axis signaling in breast cancer cells

Introduction

Chemokines are small peptides that are secreted by immune cells to modulate
the immune response and immune surveillance of the body [222]. Even though
most chemokines are released strictly in response to inflammation or injury,
expression of some chemokines is constitutive and limited to specific cells and
organs in order to sustain acquired immunity [223]. In case of inflammation,
chemokines are released at the site of inflammation to form a gradient, which
attracts leukocytes that express the cognate receptor the chemokine binds to.

C-X-C motif chemokine 12 (CXCL12) is a chemokine that mediates tis-
sue homeostasis and immune surveillance in healthy tissue [224]. In can-
cer, CXCL12 is overexpressed by carcinoma-associated fibroblasts, which con-
tributes to proliferation of the primary tumor [225]. Alternatively, it is secreted
by distant organs, forming a gradient and promoting migration of primary tu-
mor cells (metastasis) towards these organs [225].

For long, CXCL12 was thought to bind and activate only the chemokine
receptor CXCR4. Yet, in the last decade CXCL12 was found to bind and activate
the chemokine receptor CXCR7 as well [226]. In general, chemokine receptors
are G protein-coupled receptors (GPCRs) that signal through activation of G
proteins (Gαi, Gα12/13), initiating Ca2+-release and migration [227]. This rule
applies to CXCR4, but intriguingly, CXCR7 signals in a β-arrestin dependent
manner [228], which can in turn lead to activation of the MAP kinase pathway
as well as other prominent signaling pathways [229]. For this reason, CXCR7
has recently been designated as an atypical receptor (Atypical ChemoKine
Receptor 3, ACKR3) [230]. Both receptors are overexpressed in various cancer
types, and inhibition of either of them leads to decreased tumorigenesis in
vitro and in vivo [231].

The CXCR4/CXCL12 signaling axis has been extensively studied, and there
is ample knowledge on how this ligand-receptor pair interacts and which
pathways it activates. However, as noted above, CXCL12 also binds to CXCR7,
a chemokine receptor that was more recently discovered [232, 233], and thus
the effects of the CXCR4/CXCL12 axis may have been confounded by CXCR7
and need to be revisited.

The complexity of this joint CXCR4/CXCR7/CXCL12 signaling axis has only
recently begun to be appreciated. For example, it was reported for several
cell types that CXCR4 and CXCR7 are able to form heterodimers both in
vitro and in vivo, which alters G protein-dependent calcium responses, causes
constitutive recruitment of β-arrestin, and enhances cell migration [234–236].
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However, there are also reports of cell types in which one of the receptors is
expressed, but not the other. In glioblastoma cells CXCR7 expression seems
to predominate [237], while in gastric cancer, CXCR4 overexpression is well-
established [238–242] but CXCR7 does not seem to be highly expressed [243].
The importance of CXCR4 in mammary tumor growth and metastasis is well-
established [244]. Interestingly, CXCR7 is known to promote proliferation in
this tissue as well as scavenge CXCL12 by internalization and recycling [245–
247]. Moreover, expression of CXCR7 can lead to tumor growth and metastasis
of CXCR4 positive cells [246].

We aimed to elucidate the signaling machinery that is activated by CXCL12
when both receptors are endogenously expressed. In the human breast cancer
cell line BT474, both CXCR4 and CXCR7 are expressed, which makes it a
suitable model system for the study of this network. In addition, the cells
do not secrete CXCL12, a confounding trait some other cell types do display.
Using receptor-specific inhibitors enabled us to study the downstream effects
of the two receptors in isolation.

To be able to scan a broad panel of (phospho-)proteins for their involvement
in CXCR4/7-mediated signaling, we evaluated our samples using a Reverse
Phase Protein Array (RPPA). RPPA is an established, high-throughput and
reproducible proteomics approach for detection of more than 100 validated
antibodies [248]. Moreover, reliable methods have been developed for appro-
priate data processing, ensuring the quality of obtained results [249]. In view
of the growing appreciation for the complexity of GPCR signaling, applying
a systems biology approach is an increasingly attractive method for studying
these systems, and RPPA is a suitable method in the exploratory phase of the
model-building process [250].

Measuring the response of BT474 cells to CXCL12 at several time points
after stimulation revealed changes in the phosphorylation status of proteins.
Inhibition of CXCR4 or CXCR7 showed distinct effects on these responses. To
mitigate observer bias, we applied unsupervised correlation-based analyses
to the data, which confirmed the occurrence of several changes that appear to
be specifically mediated through CXCR4 or CXCR7. Our findings underline
that CXCR4 and CXCR7 have distinct signaling mechanisms and suggest their
involvement in various cancer hallmarks.
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3. Differential CXCR4/CXCR7/CXCL12-axis signaling in breast cancer cells

Results

The BT474 breast cancer cell line expresses CXCR4 and CXCR7 but
not CXCL12

First, we tested the BT474 breast carcinoma cell line for expression of CXCR4,
CXCR7, and CXCL12. Since CXCR7 is known to also bind to CXCL11 [232], a
characteristic it shares with CXCR3, we checked for the presence of this recep-
tor and ligand as well (Figure 3.1A). Interestingly, while CXCR4 was mostly
expressed on the cell surface, CXCR7 was found both on the cell surface as well
as intracellularly (Figure 3.1B). Although there was expression of CXCL12 on
the mRNA level, when we assayed for CXCL12 secretion in culture medium,
we did not detect CXCL12 secretion on the protein level. The cells did not
express CXCR3 or CXCL11 mRNA, making them a suitably “clean” system
for the study of CXCL12-induced signaling through CXCR4 and/or CXCR7.

IT1t and VUF11207 are selective inhibitors of CXCR4 and CXCR7,
respectively

Stimulation with CXCL12 leads to binding of the chemokine to CXCR4 and/or
CXCR7, and activation of the respective signaling cascades (Figure 3.1C). At
several time points after stimulation, we took samples for RPPA to study the
effects of CXCL12 on the downstream machinery over time. To study the indi-
vidual roles of CXCR4 and CXCR7 in this response, we also pre-incubated with
the CXCR4-specific inhibitor IT1t and the CXCR7-specific inhibitor VUF11207,
one hour prior to CXCL12 stimulation.

VUF11207 displays a high affinity for CXCR7 in a CXCL12 displacement
assay (Figure 3.2A), and is able to recruit β-arrestin2 to the receptor in HEK293T
cells transiently expressing CXCR7 (Figure 3.2B). Thus, it acts as a functional
antagonist by reducing the capacity of CXCR7 that is available for binding
CXCL12 [251].

CXCR4 inhibitor IT1t [252] has a higher affinity for CXCR4 compared to
the more frequently studied inhibitor AMD3100 (Figure 3.2C), while showing
equal potency in inhibiting CXCL12-induced G protein-dependent activation
of CRE transcription factor in HEK293T cells transiently expressing CXCR4
(Figure 3.2D). Moreover, in contrast to IT1t, AMD3100 as well as the CXCR4
inhibitor TC14012 have been reported to activate CXCR7 at high concentrations
[253, 254], an undesirable property that has not been associated with IT1t.
Therefore, we selected IT1t for use in this study.
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Figure 3.1: Characteristics of CXCR4/CXCR7/CXCL12 expression in BT474 cells. (A) qPCR showed
that CXCR4, CXCR7, and CXCL12 are all expressed. (B) This was confirmed by an ELISA, which
also shows the levels and locations of the proteins. (C) Schematic representation of the signaling
system and its inhibitors. CXCR4 and CXCR7 are both activated by the chemokine CXCL12.

For each of the conditions (only CXCL12, CXCL12 + 1µM IT1t, and CXCL12
+ 1 µM VUF11207), we assayed by RPPA the relative levels of 161 antibody
probes, at six time points (0, 2, 5, 10, 30, and 60 minutes after stimulation),
making for a total of 3864 data points.

The signaling response to CXCL12 stimulation is due to both
CXCR4 and CXCR7

The output of a reverse-phase protein array (RPPA) can be thought of as that
of a western blot, performed on, in our case, 161 probes at once. A common
way to initially organize this large quantity of data, after normalization, is
to scale all relative expression values to a color bar and cluster the probes
and samples, which yields a heatmap view. In the clustered heatmap view of
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Figure 3.2: Binding and functional properties of CXCR4 and CXCR7 inhibitors in HEK293T
cells. (A) VUF11207 displaces CXCL12 in HEK293T cells transiently expressing CXCR7 with high
affinity (IC50 = 9.4 nM). (B) A bioluminescence resonance energy transfer (BRET) assay shows
that VUF11207 is also able to recruit β-arrestin2 to CXCR7 with a high potency (EC50 = 2 nM). (C)
IT1t displaces CXCL12 from CXCR4 with a higher affinity (IC50 = 3.4 nM) than AMD3100 (IC50
= 124 nM) in CXCR4-expressing HEK293 membranes. (D) IT1t and AMD3100 are able to inhibit
CRE transcription factor activation with similar potency in HEK293T cells transiently expressing
CXCR4, as shown by CRE reporter gene assay. In panels B–D, error bars represent the standard
error of the mean.

our experiment, the different pre-incubation conditions (no inhibitor, IT1t, or
VUF11207) show expression patterns that are distinct from one another, but
similar among samples in the same treatment time course, indicating that the
signaling responses to CXCR4 and CXCR7 can be distinguished on a molecular
level (Figure 3.3A).

The signaling response to CXCL12 is diverse as well as receptor-specific.
We show several examples of changes in the phosphorylation status of pro-
teins in Figure 3.3B. For instance, phosphorylation of Akt at Thr308 is strongly
increased upon CXCL12 stimulation with a peak at 30 minutes. This increase
seems to be due to CXCR4 activation, since pre-incubation with its inhibitor
IT1t abolishes the signal, while CXCR7 inhibitor VUF11207 is not able to atten-
uate the increase in phosphorylation. The opposite applies to phosphorylation
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Figure 3.3: Overview of the RPPA results presented in this study. Pre-incubation with the CXCR4
inhibitor IT1t or the CXCR7 inhibitor VUF11207 in BT474 cells allowed us to study each receptor’s
downstream response in isolation. (A) Heatmap representation of the RPPA results. Red color
indicates increased (phospho-)protein levels compared to basal (unstimulated cells), while green
indicates decreased phospho-protein levels. (B) Changes in probe intensity of three phospho-
proteins upon stimulation with CXCL12 alone, or stimulation with CXCL12 after pre-incubation
with IT1t (CXCR4 inhibitor) or VUF11207 (CXCR7 inhibitor).

of p42/44 MAPK at Thr202/Tyr204, where CXCR7 inhibition leads to decreased
phosphorylation while inhibition of CXCR4 has no effect (Figure 3.3B). Fur-
thermore, we find proteins where CXCL12-induced phosphorylation seems
to be mediated by both CXCR4 and CXCR7, as is the case for p38 MAPK
phosphorylation at Thr180/Tyr182 (Figure 3.3B).

Differential clustering analysis reveals CXCR4- and
CXCR7-mediated differential signaling

Although visual inspection alone already gives insights into some signaling
proteins that are potentially activated downstream of CXCR4 and CXCR7, it is
likely that the highly intertwined nature of signaling networks obscures more
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3. Differential CXCR4/CXCR7/CXCL12-axis signaling in breast cancer cells

subtle effects of the activation of these receptors by CXCL12. Therefore, we
performed a computational analysis aimed at identifying probes that were
differentially responsive to CXCL12 under various combinations of inhibitor
pre-incubation conditions. For instance, one can preset biologically relevant
questions such as “which probes have response A in CXCL12-only and CXCL12 +
IT1t, but the opposite response in CXCL12 + VUF11207?”, while minimizing the
amount of time spent on less informative correlations in the data (e.g., probes
that respond to all treatments correlate strongly with themselves and similar
probes, but the biological meaning of this is less relevant). Supplementing
visual inspection with a computational analysis has the added benefit of help-
ing to mitigate the risk of confirmation bias in this exploratory phase of the
study. Details about the specific approach we used can be found in Materials
and Methods, but we provide a summary in Figure 3.4A.

The results of an unsupervised computational analysis must always be
manually pruned. In our analysis, an initial number of 34 probes of (potential)
interest was reported. After applying cut-offs to eliminate probes that showed
moderate or low differential expression, or erratic correlations, 18 were left,
whose expression patterns were then manually inspected. The probes identi-
fied as MAPK p42/44 pT202/Y204, c-Jun pS73, and p70S6K pT389 were flagged
by the computational analysis and withstood the subsequent manual curation
step. As their responses to CXCL12 are dependent on either CXCR4 or CXCR7
according to the RPPA results (Figure 3.4B), we selected these proteins for
further experimental validation.

CXCR7 mediates signaling through MAPK p42/44

To validate the differential phosphorylation of MAPK p42/44, we performed
western blots to verify its abundance at several time points after CXCL12
stimulation, with and without pre-incubation with CXCR4/7 inhibitors. As in-
dicated by the RPPA data we discussed above (Figure 3.4B), indeed, the level
of MAPK p42/44 phospho-T202/Y204 increases after CXCL12 stimulation in a
CXCR7-dependent manner (Figure 3.5A). The western blot results also refute
the reverse (CXCR4-dependent signaling through activation of MAPK p42/44
phospho-T202/Y204), as pre-incubation with IT1t has no effect on phosphory-
lation.

Western blotting did not confirm CXCR4-dependent phosphorylation of
c-Jun or CXCR7-dependent phosphorylation of p70S6K (Figure 3.5B-C), al-
though their relative expression patterns on the RPPA resemble specific CXCR4
and CXCR7 responses (respectively), and thus warrant their selection in the
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Figure 3.4: Summary of differential clustering analysis. (A) By comparing to each other all
time course expression patterns, a matrix of correlation values is obtained. We can then cluster
the probes according to their similarity under all combinations of inhibitor conditions, and use
questions like “which probes cluster under CXCR4 inhibition, but not under CXCR7 inhibition?” to
obtain lists of leads. (B) The list of ∼20 leads is manually inspected. Phosphorylated MAPK
p42/44, c-Jun, and p70S6K were reported by the analysis and stood up to scrutiny, and were
selected for further investigation.
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lead discovery stage (Figure 3.4B). Still, as MAPK p42/44 is a potent and well-
known regulatory component, these findings underline the importance of the
CXCR4/CXCR7/CXCL12 axis in the broader context of signaling in in breast
cancer cells (Figure 3.5D).

Discussion

Chemokine receptor signaling is essential to the immune response, and it is
often deregulated in diseases like cancer. Specifically, in breast tumors, CXCR4
signaling plays an important role in proliferation and vascularization of the
primary tumor, as well as in migration and metastasis to distant sites [244].
Interestingly, CXCR4- and CXCR7-mediated signaling show distinct patterns
in breast cancer.

For instance, a recent study where the rat mammary adenocarcinoma cell
line MTLn3 was used to overexpress these two receptors showed that CXCR7
expression increases chemotaxis of MTLn3 cells towards CXCL12 compared
to cells that only express CXCR4, and that binding of CXCL12 to CXCR4
was responsible for this response [245]. Also, both in vitro and in vivo,
CXCL12-induced invasion was decreased when cells expressed both CXCR4
and CXCR7, compared to cells that only expressed CXCR4. Additionally,
cells expressing CXCR4 had increased cell motility within the primary tumor
as well as increased intravasation compared to non-CXCR4-expressing cells,
while CXCR7-expressing cells enhanced primary tumor growth.

The BT474 breast cancer cell line expresses both CXCR4 as well as CXCR7
endogenously, which enabled us to study the contribution of both receptors
to its signaling phenotype. Upon inhibition of CXCR4 or CXCR7 in BT474
cells, we observed distinct phosphorylation patterns of signaling proteins on
a reverse-phase protein array.

Reverse-phase protein arrays (RPPA) were designed to enable the probing
of samples of interest with (phospho-)protein-specific antibodies in a fast and
reproducible manner. This method has been used widely in studies to gain
insight into complex signaling networks. For example, the 60 cancer cell lines
in the NCI-60 panel were characterized using RPPA to assess which signaling
networks are most often affected in cancer, and to gain insight into sensitivity
to standard anti-cancer therapy [260]. Furthermore, RPPA has been used
to make a molecular distinction between different cell populations in acute
myeloid leukemia [261].

Because RPPA is an antibody-based assay, it lends itself to a wide variety
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Figure 3.5: (A) Western blotting con�rms that phosphorylation of MAPK 42 /44 at T202/Y204 de-
creases upon CXCR7 inhibition. This �nding con�rms our computational prediction of CXCR7-
mediated signaling through MAPK, and is consistent with the earlier RPPA results (Figure 3.4B).
Conversely, inhibition of CXCR4 by IT1t has no discernable e � ect on CXCL12-induced MAPK
phosphorylation. CXCR4-mediated c-Jun phosphorylation (B) and CXCR7-mediated phospho-
rylation of p70S6K (C) were not con�rmed by the western blot results. (D) The network context
of MAPK, p70S6K, and c-Jun with respect to important signaling pathways and upstream stim-
ulation. MAPK's namesake MAP kinase pathway is implicated in cell growth and frequently
deregulated in cancer. The PI3K/Akt axis, shown partially in the center of the network, is known
to respond to CXCR4 activation [255], and various means of cross-talk exist between the MAP
kinase and PI3K/Akt pathways [256–259]. For each (phospho-)protein that was assayed by RPPA,
its CXCL12 response pro�le according to the computational analysis (CXCR4-associated, CXCR7-
associated, and non-speci�c response), as well as the results of the subsequent manual curation
step (“selected upon manual inspection”), are denoted by colored circles.
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Once generated, results can be visualized, but they are also always pre-
sented as a human-readable table (which includes reduced costs for each reac-
tion) and as a machine-readable, tab-separated format file that can be imported
in e.g. Excel (Figure 4.2D).

Visualization

The visualization module generates images in SVG format (Scalable Vector
Graphics), based on the analysis results returned by PySCeS. The advantages
of using SVG are manifold, some of the more notable being image scalability
and ease of editing using third party software. Depending on the web browser
used, users may need to download a (free) plug-in to view the images.

For each selected pathway an interactive KEGG-like image is drawn (Fig-
ure 4.2C), on which the run results are superimposed. To the biologist, this
readily recognizable representation is an improvement over unsupervised vi-
sualization algorithms (e.g. in [285]), and while this approach to data visual-
ization was already applied some years ago [286], to our knowledge, FAME
is the first web-based application that both generates data and automatically
visualizes results.

Many elements in the results images are clickable (another advantage of
the SVG format), to make more information available more conveniently. For
instance, clicking a metabolite will display an overview of reactions producing
or consuming it, along with the KEGG information page for the metabolite,
while clicking a reaction will display that reaction’s KEGG information page.

Conclusions

With FAME, we present the community with an easy to use web-based “one
stop shop” for the manipulation and execution of stoichiometric models. It
enables biologists to create or import models, edit them, run them at the click
of a button, and visualize the results from the browser window. We expect
that its install-free integration of execution and visualization will appeal to
investigators and educators alike.

Future releases of FAME will feature integration with web-based annota-
tion services, gene associations, and further analysis options. Finally, the novel
SOAP interface to PySCeS-CBM will facilitate the creation of user-friendly in-
terfaces based on PySCeS that will uncover powerful modeling functions that
may otherwise remain hidden behind the ever-enigmatic command line cur-
sor.
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4. FAME

Availability and Requirements

FAME is intended and offered as a web service, but can also be installed locally,
as source code will be made available upon request. FAME can be accessed
online at http://f-a-m-e.org/, where a full user manual and guided tutorial are
available. PySCeS-CBM and Mariner are also open source, and can be down-
loaded from http://pysces.sourceforge.net/cbm. FAME and PySCeS/Mariner
are covered by their own respective BSD-style licenses, which can be found on
the respective web pages and, in short, entail that they are open-source and
free to use for both academic and non-academic users.
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FAME • • • • • • • • •

Model SEED [276] • • ◦
1

• • ◦
2

•

COBRA Toolbox [277] • • • • • • • ◦
3

◦
3

OptFlux [278] • • • • • • • •

CellNetAnalyzer [279] • • • • •

PySCeS [147] • • ◦
4

• • •

YANASquare [285] • • • • • • •

MEGU/Pathway Projector [286] • •

BioMet Toolbox [141] • • ◦
4

•

Cytoscape [287] • • ◦
1

• • •

Table 4.4: Comparison of the features offered in FAME and existing alternatives. A • indicates a feature that is present; an open circle (◦) denotes
a partial implementation of the feature in question. Under visualization, “supervised” means the application uses predefined network topologies,
“unsupervised” means networks are drawn on the fly, as graphs, and “user-supplied” means that visualization is performed on user-supplied network
topology maps. Most packages feature additional analyses besides the ones listed in this table. As many of these tools are custom-built for these
analyses, or vice versa, we do not list those analysis options in this table. The tools whose functionalities most resemble FAME’s have no web interface
or have inferior visualization capabilities. On the other hand, tools featuring (or focusing on) superior visualization lack the powerful analysis features
unlocked by PySCeS-CBM.
Notes:
1. Gene/reaction associations are used to build models, but no analyses are performed on them.
2. Model SEED has only limited editing capabilities once a model has been produced.
3. The COBRA Toolbox uses an SBML dialect specific to this tool.
4. Certain dependencies must be installed first.
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5. An interactive graphical map of metabolism

Introduction

High-throughput experimental technologies have seen spectacular advances
in recent years, and as a result, previously unimaginable amounts of biological
data are now available. This “omics data explosion” includes transcriptomics
(sequencing), metabolomics, and fluxomics data [288–291], and the analysis
and integration of these data types can reveal important information about
the system-level functioning of organisms [292]. Computational modeling of
cellular behavior is a tried-and-tested method for the interpretation of “big
data”, and with genome-scale models now a reality, they are currently a staple
of systems biology (Chapter 1).

The extensive body of existing biochemical knowledge of metabolism,
combined with the relative ease with which relevant experiments can be
performed and the central role of metabolism to the functioning of the cell,
make genome-scale reconstructions of metabolism an obvious starting point
for the interpretation of genome-scale data sets. Based on the contents of
an organism’s genome, these reconstructions list the metabolic reactions it
can perform [124, 275]. However, even though many metabolic enzymes are
well-characterized, for most reactions we still lack knowledge of the enzyme
kinetics that are involved. To bypass this issue, genome-scale reconstructions
are solely based on the reaction stoichiometry, and they are therefore generally
referred to as genome-scale stoichiometric models (GSSMs).

To leverage the biological information that is included in GSSMs and pre-
dict physiological properties, various stoichiometric network analysis tools
are available [293, 294]. For instance, Flux Balance Analysis (FBA) and Flux
Variability Analysis (FVA) can be used to predict the internal flux distribution
and its variability while optimizing for cellular growth yield [138, 139, 295], a
typical objective in the study of micro-organisms or cancer cells. Alternatively,
tools like OptKnock [140] can be used to predict which gene knockout strate-
gies would result in increased production of metabolites of interest, such as
biofuels.

Unfortunately, the results of analyses performed on GSSMs come in the
form of lists of (reaction) identifiers and (flux) values, which often have
thousands of entries. The sheer size of these lists makes their interpreta-
tion a tedious and human-unfriendly process, yet to be of any biological
value, interpretation of e.g. FBA results in terms of biological functions, mod-
ules, and pathways is essential. To achieve this, adequate visualization is
paramount, and attempts to visualize genome-scale data have indeed been
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made. These approaches can be classified into supervised (human-driven)
and non-supervised (fully automatic) ones. The latter approach, fully auto-
mated mapping of genome-scale models, results in graphs (in the mathemat-
ical sense) that are even more difficult to interpret than the raw data one set
out to visualize on them, so we will not discuss them in detail here.

Human-driven visualization methods, on the other hand, are considerably
more popular, as hand-drawn maps are markedly easier to interpret. Tools
like KEGG [281], Cytoscape [296], CellDesigner [280], and the COBRA Tool-
box [277] each offer their own particular take on modeling and visualization.
However, since none of them was originally designed for visualizing genome-
scale models or genome-scale data, they are of limited use for this purpose.
This becomes particularly clear when one attempts to share, extend, or adapt
an existing map. Commonly, users who attempt this quickly find themselves
fazed by the need for special software, by incompatible identifiers, or simply
by not being able to access an editable version of the desired image. Even
iPath [297], which was designed with genome-scale applications in mind,
suffers from these problems, and thus far, usability issues have prevented
the wide-spread communal use of visualization aids, as well as their use in
combination with computational results. However, the increased availability
of high-throughput data makes the lack of adequate graphical interpretation
tools more dearly felt than ever.

We address this issue by presenting the first comprehensive genome-scale
data visualization tool that is both extensible and open-source: A graphical
map of metabolism that can display any type of data that is associated with
reaction identifiers, gene identifiers, or metabolite identifiers. The map is
fully integrated with FAME, the web-based Flux Analysis and Modeling En-
vironment [298], but it can also be downloaded and used to display results
from other analysis tools. To enable advanced visualization options, we also
provide a stand-alone Python console application named VoNDA, which can
be used to take advantage of the functionality of (other) existing constraint-
based modeling software. For instance, using VoNDA in combination with
PySCeS-CBM [147] or COBRApy [299] allows for a fully Python-based mod-
eling experience.

As a demonstration of how the generic map can be instantiated to suit
a specific genome-scale model, we also present a graphical map that is spe-
cific to Synechocystis PCC 6803 (hereafter simply Synechocystis) [300–303]. This
cyanobacterium can directly convert carbon dioxide (CO2) into carbon com-
pounds, which makes it of great interest for the development of production
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techniques for third-generation biofuels [304–306].

At http://f-a-m-e.org/genericmapdemo/, the generic map is pre-loaded into
FAME, along with a model of Escherichia coli to demonstrate the map’s use in
analysis and visualization in an interactive manner. Similarly, the Synechocys-
tis map and model are made available at http://f-a-m-e.org/synechocystis/.
VoNDa can be downloaded from http://vonda.sf.net/.

Results and Discussion

An overview of the generic metabolic map

Which reactions should one draw on a “generic” metabolic map? Drawing
all imaginable reactions would be very labor-intensive process that would,
ironically, render the map cluttered and useless. Selecting reactions by hand is
a reliable method to include biologically relevant pathways, but it introduces
a bias towards familiar or favorite organisms. Therefore, we selected about
50% of the reactions on our map by hand, and performed a computational
analysis on all genome-scale models in the MetaNetX database [307] to select
the other reactions based on their prevalence in existing models (see Materials
and Methods).

The resulting generic metabolic map that we present here contains 1605
reactions (excluding exchange and transport reactions). The metabolites and
reactions on it are represented internally in the MetaNetX namespace [307].
MetaNetX is designed to be very comprehensive and comes with cross-referencing
tables that aid the integration of the map with models from a variety of sources
(see Table 5.1 for an example). Users who favor an alternative naming scheme
can either convert their model to MetaNetX format (a tool for this is provided
on http://metanetx.org/), or the map to their model’s format. The latter process
is automated in FAME, to maximize the map’s immediate utility and minimize
the conversion effort on the user’s part.

The map can be used to visualize reaction-based results, such as those of a
FBA or FVA, by color-coding reactions based on their flux or variability value
(Figure 5.1).

Each reaction group also includes three small boxes that can be used to
display information about the genes that are associated with that reaction (see
Materials and Methods). These rectangles are normally hidden from view, but
can be shown when gene expression information is available.

76



Namespace “Enolase” “ATP”
BiGG [282] R_ENO M_ATP
BioPath [308] RXN01306 Adenosine-5-prime-triphosphate
Brenda [96] BR3384 BG1395
KEGG [281] R00658 C00002
MetaCyc [309] 2PGADEHYDRAT-RXN ATP
MetaNetX [307] MNXR1898 MNXM3
SEED [310] rxn00459 cpd00002
UniPathway [311] UCR00658/UER00187 UPC00002

Table 5.1: Example showing the identifiers of a reaction (2-phosphoglycerate to phosphoenylpyru-
vate (PEP), catalyzed by the metabolic enzyme enolase, Figure 5.3) and a metabolite (ATP) in
various namespaces.

Figure 5.1: A summary image showing the map’s flux analysis visualization features. To prevent
the figure from becoming illegible, this example covers only <10% of the entire generic metabolic
map. This image shows FBA results of the iAF1260 model of E. coli being visualized by color-
coding the reaction lines. Exchange reactions in this model have been automatically added to the
map by FAME, and sorted by absolute flux magnitude (partially shown in inlay on left hand side
of figure).
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Using the generic metabolic map to visualize arbitrary organisms

Although the map can be downloaded separately and adapted to the user’s
needs, we have also integrated it in FAME, which can directly load it and
tailor it to the user’s model. The link between a model and the generic map
is achieved by ensuring that the identifiers of the reactions, metabolites, and
genes in the underlying model match those on the map.

FAME offers several tools that help make sure the model and map are
optimally linked. In addition to converting the map to the namespace the
model is composed in, it can hide reactions that are not in the model, and it
can automatically draw reactions that are defined in the model, but that are not
yet on the generic map. The user can then drag these into place to customize
the map to their specific needs, and use this customized map instead of the
generic one. When used in conjunction with a model that uses the MetaNetX
namespace, the map can also be directly loaded in VoNDa to execute more
complex visualization queries from the command line.

It follows from the above that the generic map we present here should be
seen as a starting point, both for individual visualization needs as well as for
a comprehensive generic visualization solution for the community. While we
provide various tools that help tailor the map to the user’s needs based on
the contents of the model, and this is likely to be sufficient for incidental use,
workflows that rely heavily on graphical interpretation will require that the
map be customized to a greater extent. In most cases, this means expanding the
map with additional reactions. As each reaction needs to be manually added in
the desired location, this is necessarily a rather labor-intensive process, but we
have attempted to minimize the time investment that is required to customize
the map.

Besides using an open source image format, we do this by using the
MetaNetX namespace, whose identifiers can be easily migrated to cognate
identifiers in alternative nomenclature systems (e.g. [282, 312–314]). FAME
can migrate the map’s identifiers to a variety of namespaces to provide a start-
ing point for expansion of the map. Additions to the map can be drawn by
hand or in whichever other way the user deems most effective or most pretty,
as long as each new element is associated with the correct identifier. We pro-
vide an online SVG-editor in FAME, which allows for easy manipulation of
the metabolic map, including any results superimposed on it.

While the quality of any customized map will be strongly dependent on
the knowledge and skill of whoever modified it, as well as the quality of the
model it represents, the present work presents the community with a solid ba-
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sis from which to start the process of gaining biological insight through graph-
ical representations of large data sets. The base files for the map are hosted
on GitHub (https://joostboele.github.io/Metabolic-Map/), which encourages
users to share their modifications for others to (re)use (e.g. by further adapting
them and sharing the result) [315].

Positioning the map in the spectrum of visualization approaches

Obviously, the challenge our map addresses is not a novel one, and con-
sequently, alternative solutions have been proposed. Broadly, these can be
categorized into solutions that use the existing metabolic map from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [316], those that build upon the
simulation framework offered by the COBRA Toolbox [277] or directly on Mat-
lab, and all other solutions. While each approach has its merits, we decided
against plugging into an existing framework, since existing solutions either
impose too many restrictions on form and functionality (as in the case of KEGG
or WikiPathways), or because of limited support for (open-source) graphical
applications (as in the case of the COBRA Toolbox, which instead focuses on
simulation). Also, importantly, many otherwise adequate visualization tools
have no analysis functionality; instead, they rely on the user supplying data
from an external source.

In Tables 5.2 and 5.3, we provide general and technical overviews of the
various extant visualization solutions, and briefly describe their approach to
the visualization of FBA-type results. It should be noted that the capabilities
of the various tools vary with their aims and intended use, and that Tables 5.2
and 5.3 solely assess their usefulness for genome-scale metabolic applications,
and not their general usefulness or quality. For instance, CellDesigner [317]
is very commonly used for a broad range of visualization tasks, but finds
application mostly in the realm of small to medium sized signaling models.

As our visualization solution was developed specifically for genome-scale
applications, it should come as no surprise that the combination of FAME and
VoNDa covers the foreseeable user requirements in this area. Thus, regard-
less of any modifications that may be required to tailor the map we present
here to a specific purpose, this first generic, comprehensive, extensible, and
human- and computer-friendly map of metabolism will surely be helpful in
the interpretation of systems biology results. By offering this resource not
only as a flat file, but also as an integrated part of an interactive online analysis
environment, we expect it to be of even greater use to the community.
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Tool name Ref. Short description

KEGG-based
KEGG [316] The well-known KEGG metabolic map has been made available in SVG format.

Very comprehensive mapping effort. Detailed information is hidden for rea-
sons of perspicuity, which makes detailed interpretation of run results difficult.
KEGG cannot perform analyses, but it can superimpose data on maps.

CytoScape [318] Cytoscape is a widely used open-source visualization platform. It cannot per-
form analyses on metabolic networks, but has an intuitive editor for network
images and can visualize a variety of data. Uses fixed layout elements. The
KEGG map of metabolism is available in Cytoscape format.

Pathway Projector [126] Pathway Projector is a web-based pathway browser that can be used to view,
edit and visualize data on the KEGG pathway maps. It is based on the Google
Maps API, and does not itself perform analyses. Images can be exported in
XML or Biopax format.

iPath 2.0 [297] iPath is web-based and can visualize KEGG maps of metabolic and regulatory
networks. It can export images in various formats, including SVG, but it cannot
change the basic layout of elements or perform analyses.

COBRA/Matlab-based
COBRA Toolbox 2.0 [277] Well-known Matlab-based modeling suite. Requires the use of the Simpheny

image definition format and uses a fixed layout scheme. Can superimpose
data on image, but visualization capabilities and options to gain a deeper
understanding in the data or the model are limited.

Paint4Net [319] Plug-in for the COBRA Toolbox which adds detailed information about run
results to visualization capabilities. Can be used to make new maps, but this is
based on unsupervised graph algorithms.

(Cy)FluxViz [320] Plug-in for the COBRA Toolbox (CyFluxViz) and Cytoscape (FluxViz) designed
to specifically facilitate the visualization of flux distributions. Relies on the host
program for analysis features (COBRA Toolbox only) and requires a map to be
supplied by the user.

RAVEN Toolbox [321] While primarily presented as an aid in the metabolic reconstruction process,
the RAVEN Toolbox also has visualization functionality. For this, it requires
pre-drawn maps in the CellDesigner format.

FAME (current) [298] Web-based, open-source. Can analyze models and visualize results on SVG
maps, or visualize arbitrary data. Features an image editor, and can hide unused
features of the image or automatically expand it with additional reactions. Is
indifferent to the layout of maps as long as elements have the right IDs.

VoNDa [322] Stand-alone supplement to the above. Has visualization features similar to
FAME, but offers additional control over the parameters of visualization and
can include or exclude reactions based on the pathway they are in, their flux
value, or the metabolites that participate in them.

Other
WikiPathways [323] This community-driven project centers around pathways (unsurprisingly), and

currently includes over 1700 species-specific pathway maps. The project’s
strength lies in the extensive annotation of all elements on all maps, which
ensures that information can be reused in the future. The task of combining
the various maps into single genome-scale visualization aids has yet to be
undertaken.

CellDesigner [317] CellDesigner is a graphically oriented stand-alone modeling tool that can be
used for both simulation and visualization. Its feature set is impressive, and
mostly geared towards kinetic models. Consequently, it has mainly seen (pub-
lished) use in the study of regulatory networks.

Table 5.2: Overview of extant visualization aids for biological systems.
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Tool name Ref. Accessibility Functionality Automatic drawing

OS WB SA ED Analysis Overlay CLI Leave out Add

KEGG-based
KEGG [316] • •

CytoScape [318] • • • • ◦

Pathway Projector [126] • • • •

iPath 2.0 [297] • •

COBRA/Matlab-based
COBRA Toolbox 2.0 [277] ◦ • • • •

Paint4Net [319] • • ◦ •

(Cy)FluxViz [320] • • ◦

RAVEN Toolbox [321] ◦ • • • •

FAME (current) [298] • • • • • ◦ • •

VoNDa [322] • • ◦ • •

Other
Wikipathways [323] • • •

CellDesigner [317] • • • • ◦

Table 5.3: Comparison of of the technical capabilities of visualization tools. Only tools that can
visualize data are shown here. The tools are grouped depending on their “base” drawing; such
drawings include the KEGG map of metabolism, the COBRA Toolbox drawing philosophy, and
the map we present here. SBGN and SBML Layout are not shown here, as they are graphical
frameworks but not tools. Interestingly, various popular visualization tools cannot perform
analyses and rely on the user supplying data instead. OS: Tool and image formats are open
source (•); if non-open-source dependencies exist ◦ is displayed instead. WB: Web-based. SA:
Stand-alone. ED: Ability to edit the structure of the graphical map. Analysis: FBA, FVA, etc. can
be executed from within tool. Overlay: Results of analysis or external data sets can be visualized
on map. CLI: Command line interface for advanced analyses (◦ is displayed for CLIs that can be
accessed through additional software). Leave out: Unused reactions can be hidden from map.
Add: Reactions that are not drawn can be automatically or manually drawn (•) or manually
added as necessary (◦).

Materials and Methods

Selection of reactions for the generic graphical map

Previously, we developed a graphical map of Synechocystis metabolism, which in-
cluded 902 reactions (including exchange and transport reactions) [322]. We started by
selecting core metabolic reactions from this set, and converting them from the BiGG
namespace to MetaNetX (see Table 5.1 for an example of such conversions). As Syne-
chocystis is a rather specialized organism, it lacks many reactions that are common in
other parts of the tree of life, but rather than just hand-picking these, we applied a
computer-guided selection procedure to avoid introducing a bias in the map’s content.

To do this, we assessed the prevalence of each reaction by determining in which
fraction of the models in the MetaNetX database it occurs. The MetaNetX database
contains models from a variety of sources; some of these are built and curated by hand
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5. An interactive graphical map of metabolism

(e.g. the models from the BiGG database), whereas others were generated computation-
ally, and are barely curated (e.g. the models from The SEED). We took this into account
when assessing a reaction’s “prevalence in existing models”, by not only determining
the prevalence of each reaction in all models, but also by restricting our scope to cu-
rated models in the database. The results of these analyses were highly comparable,
presumably because the information the automatically constructed models are based
on is generally provided by the available manually curated models.

By sorting the list of reactions in order of descending prevalence, we could de-
termine how much of each model we could visualize if we would create a map with
the first n reactions. By varying the value of n, and the models whose coverage we
assess (all models, or only curated models), we then determined that approximately
2000 reactions would be an optimal number for our map, as adding reactions beyond
that number is no longer effective towards generating a “generic” map (Figure 5.2).
However, additional reactions can still be added to tailor the map specifically to a
certain (group of) organism(s).

We manually pruned the list of suggested reactions for consistency and biological
sense, and combined with the reactions we carried over from Synechocystis (many of
which were among the selected ~2000 reactions), the first draft of our generic map
contains 1605 reactions. This number is lower than the 2000 quoted above, because
exchange and transport reactions are not included in the generic map by default.
Instead, we included an option in FAME to automatically draw these reactions based
on the model the map is used with.
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Figure 5.2: After ~2000 reactions, adding more reactions to the generic map results in diminishing
returns on the map’s coverage. In determining how many reactions to include in the generic
map, we selected approximately half of the reactions manually, and the other half based on their
prevalence across the models in the MetaNetX database. This plot shows that adding more than
~2000 reactions to the map would have a relatively low return on investment for a generic map,
although it may still be a good idea when one is interested in a specific organism.
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Construction of the graphical metabolic map in SVG

The map is represented in the Scalable Vector Graphics (SVG) format to maximize
its potential for reuse by the community as well as its accessibility by both humans
and computers. Each reaction is represented by a group node whose id attribute is the
same as the reaction’s identifier in the MetaNetX namespace. This way, the entire group
can be hidden or removed if the reaction is not in the model that is being visualized.
Each reaction’s group includes the metabolites participating in the reaction, a path that
connects these metabolites, rectangles that can be used to visualize e.g. gene expression
data, and a hidden text node with the string ReactionValue followed by the reaction
ID (Figure 5.3B). Because each reaction’s group contains all metabolites participating
in it (with the exception of some abundant co-factors), removing a reaction from the
middle of a pathway does not affect adjacent reactions that use the same metabolites: If
the metabolite also participates in an adjoining reaction, that reaction will have a copy
of the metabolite in its group as well.

Using the SVG format allowed us to make the map interactive and dynamic. Specif-
ically, it includes hyperlinks that can direct the user towards sources of additional
information (e.g. KEGG) or, when FAME is used to generate simulation results and
display them on the map, to details about the run that generated the displayed results.
If we had utilized one of the budding visualization standards like the Systems Biology
Graphical Notation (SBGN) [324] or SBML layout [325], including similar functionality
would require the user to install additional third-party software simply to view the
image, which would be undesirable. The SVG format, on the other hand, is open
source, and it is commonly used and widely supported on the web.

Importantly, popular image manipulation software (such as InkScape or Adobe Il-
lustrator) can import SVG files, which ensures that the map can be used as base material
for publication-grade figures. As SVG is also computer-friendly, it is conducive to the
automation of tasks like the extraction of subnetworks from maps, or the development
of a new metabolic map for a specific organism using the generic map as a blueprint.

The map’s features and their relation to biology

The map includes multiple instances of common metabolites, such as ATP, ADP,
NAD(P)(H), and other co-factors. These metabolites are included on the map in vari-
ous locations, which greatly reduces the clutter that would arise if only one instance of
each were drawn (graph based visualization solutions tend to do this). Other helpful
features are hidden when they are not in use, but deserve a brief explanation here; an
overview of these features is given in Figure 5.3.

For instance, space has been reserved on the map to display flux values for reactions
and the direction in which the reaction takes place (Figure 5.3B). Furthermore, when
displaying run results generated in FAME, metabolite names link to a page with a list
of fluxes that produce and consume the respective metabolite. Finally, when display-
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5. An interactive graphical map of metabolism

ing run results, the lines that represent reactions can be color-coded to represent the
magnitude of the flux through them (or the variability of this flux, in the case of FVA
results), and an explanatory color bar is displayed at the top of the image (Figure 5.3C).

ReactionValueMNXR1898

0.45

MNXR1898 expr: -3

Hidden text to be replaced
by reaction value

Hidden rectangles
can display expression data

Reaction arrow can be colored, 
arrowheads denote reversibility or flux direction

Tooltips reveal plotted expression values
Unused rectangles remain hidden

A

B

C

Figure 5.3: Overview of the “hidden” features on the map. The example reaction is catalyzed by
enolase, a highly conserved enzyme that was also used as an example in Table 5.1. (A) When
viewing the map without visualizing data, only the reaction’s main reactants are shown, as well
as the reaction’s reversibility. (B) Exposing the hidden features reveals a text string that serves as
a placeholder for flux data (“ReactionValue” plus the ID of the reaction) as well as three rectangles
that can be used to display gene expression data. (C) Example of all of these features in use
simultaneously. Hovering the mouse pointer over a rectangle reveals a tooltip with the plotted
expression value. When viewing FBA results, clicking a metabolite opens a page that shows
which reactions consume and produce the metabolite.

Integration of the map with FAME

To demonstrate the functionality of the map as well as facilitate its use, we have added
a customized section to FAME, the Flux Analysis and Modeling Environment [298].
Visiting http://f-a-m-e.org/genericmapdemo causes the generic map to be loaded, along
with the iAN1260 E. coli model from the BiGG database [282]. After converting the
map to the BiGG namespace, which is a one click operation, the user is able to view,
edit, and run the model, and have analysis results visualized on the map we present
in this article. Though the ability to visualize results on user-supplied (custom) maps

84



was already present in FAME, the URL described above pre-loads the model and map
and eliminates the need for loading several files separately.

When the map is loaded, FAME displays a new input box for gene expression data,
allowing for visualization of these data on the map for interpretation in conjunction
with flux analysis results. In addition, we have expanded FAME with an in-browser
image editor. Because this image editor runs on the client machine as a JavaScript
applet, its effectivity at editing the map is dependent on this machine’s specifications.
However, users can always download an editor-friendly version of the map for offline
editing.
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JB, TRM, and RCJ developed the map. JB, TRM, and BT wrote the chapter, with FJB
providing helpful comments.
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6. Biomass composition of human cells

Background

Genome-scale stoichiometric models have become a highly valued tool for the
study of metabolism [326]. But the scale of these models comes at a price:
To allow the effective study of these large models, reaction kinetics must be
(largely) ignored, even when they are known. In the study of human cells,
a similar agnosticism occurs with respect to the objective function, but this
disinterest is not justifiable. The choice of objective function has a profound
impact on simulation results, yet strangely, it does not usually receive much
attention, although historically there have been notable exceptions [163, 327].

In the study of microorganisms, there is agreement in literature that cell
growth is an appropriate choice for an objective function (see e.g. [328–330]),
and to an extent, this also applies to cancer (e.g. [160, 161]). However, healthy
cells from multicellular organisms are a different matter, on which the jury
is still out. For instance, Gille et al. tested a liver model with 442 different
objectives, none of which amounted to biomass production [157], and Shlomi
et al. predicted metabolic capabilities based on gene expression data, forgoing
the use of an objective function altogether [331].

Alternative types of objective functions have been proposed (see e.g. [110,
149,332]), but none seem to appeal to researchers on an intuitive level the way
biomass production [163] does. Regardless, once one decides that biomass
production is the objective function to go with, there is a second issue: what is
“biomass” made of? Classical biochemistry has been used to answer that ques-
tion for various organisms. For Escherichia coli [333], Lactococcus lactis [328],
and Lactobacillus plantarum [329], the biomass composition was determined di-
rectly, whereas for Saccharomyces cerevisiae, the commonly used “Yeast 5” [330]
and iTO977 [334] models contain biomass equations that are based on infor-
mation from literature. In yeast, it is known that growth conditions (carbon
limitation, nitrogen limitation) have a significant impact on biomass compo-
sition, and in the two latter references, the authors employ computational
methods (e.g. sensitivity analysis [334]) to circumvent this issue.

The situation is more complex for multicellular organisms. Healthy tissue
does not strive (solely) for the production of more healthy tissue, and the
composition of human biomass is expected to vary by tissue type [164]. Also,
acquiring sufficient biological material of which to determine the biomass
composition can be problematic. The study of cancer cells does not suffer from
these limitations, as cancer cell lines can be cultured in vitro and few people
object to parting with primary tumor cells. In addition, their hyperproliferative
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Figure 6.1: The human biomass composition described in this chapter (top), along with three
popular biomass compositions from literature. While all three other biomass equations are widely
used in genome-scale modeling, none of them is derived solely from human data.

phenotype [14] justifies the use of biomass production as an objective function
in the study of their metabolic properties. But these can hardly be called new
insights. In 1996, mouse hybridoma cells were studied using a flux balance
analysis (FBA) approach [46], and their biomass composition was determined
as a matter of course. A similar study, also on murine hybridoma cells, was
performed about a decade later by Sheikh et al. [335], and Altamirano et
al. determined the biomass composition of Chinese hamster ovary two years
later [336] (Figure 6.1).

In this light, it is highly surprising that so far, no genome-scale study
of human metabolism has included an experimentally determined biomass
composition. The “Recon 1” reconstruction [155] does not include a biomass
reaction. Derivative works add to this model a biomass reaction that is based
on literature from a variety of eukaryote species [161], or refer to the “plurifor-
mity of human biomass” and omit it altogether [158]. “Recon 2”, the successor
to Recon 1, does include a biomass reaction, but this reaction is based directly
on the murine hybridoma work of Bonarius et al. [46, 50] and therefore is of
limited value to the study of human metabolism (we also discovered some
other technical shortcomings, which we will discuss in later sections).

The above illustrates that thus far, in spite of some notable exceptions [157],
many FBA-derived conclusions about human metabolism [164] and disease
[160, 161] have ultimately been based on arcane combinations of mouse, rat,
dog, and human biomass samples. Therefore, we set out to experimentally
determine the first (fully) human biomass composition, and to examine the
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6. Biomass composition of human cells

effect of this novel biomass equation on modeling results. Because there can be
all sorts of differences between different cell types, we did not aim to determine
the be-all and end-all of human biomass compositions. Instead, we focused
on the HL-60 leukemia cell line [337], which has several properties that make
it especially suitable for this kind of study. For instance, (neutrophilic) HL-
60 cells can be induced to differentiate into granulocytes by adding specific
chemicals to the culture medium [337], and healthy counterparts to the cancer
cells can be easily and safely acquired. Most importantly, however, the cells
can be grown in suspension, which makes it easier to accumulate the required
amount of material for our biomass determination.

So what is “biomass” made of? Broadly, it consists of five major fractions.
These are protein, lipids, carbohydrates, RNA, and DNA. In addition, there
is a category of “other” contributors to biomass, which is usually taken to
include ions and vitamins [163]. Often, the exact contribution of these other
components to biomass is difficult to determine, but they are sometimes ex-
plicitly included as biomass components to make sure the pathways leading
up to them carry a (small) flux, mimicking the biological situation. Biomass
equations typically also include an energy requirement in the form of ATP hy-
drolysis. This represents the part of the (measured) energy expenditure that
is associated with maintenance and/or the production of new cells, but that is
not accounted for by known anabolic processes [329, 338].

For most of these main categories, there are assays that enable their quan-
tification. The exceptions are “other”, which by definition cannot itself be
quantified, and the energy requirement, which is usually taken from litera-
ture [338].

The subcomposition of the protein, lipid, carbohydrate, RNA, and DNA
components is then determined in various ways. The contributions of the (de-
oxy)nucleotides to RNA and DNA follow from their prevalence in ribosomal
RNA and genomic DNA, respectively. Likewise, the amino acids that make
up the protein fraction can be inferred from protein sequences, but as protein
expression patterns are known to vary greatly across cells and cell types, the
preferred method is to experimentally quantify them using gas or liquid chro-
matographic methods. For the carbohydrate fraction, a (phospho-)hexose is
usually selected as a representative for glycogen and included in the biomass
equation, after quantifying total hexoses/pentoses in biomass. Models of hu-
man cells therefore necessarily overlook their inclusion in glycoproteins, but
since these cannot yet be accurately modeled, it does not make much sense to
include them in such detail anyway [339]. The lipid subcomposition is often
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estimated or taken from literature (if it is modeled in any detail at all), as the
modest contributions of its subcomponents to total biomass are usually not
deemed sufficient to warrant research into their quantities.

In this chapter, we describe the first fully human biomass composition,
which we derived from HL-60 cells. Insertion of this biomass reaction into
Recon 2.1 [339] uncovered some fundamental issues with the currently most
popular model of human metabolism, including elemental imbalances. After
remedying those, an evaluation of the effects of our more complex new biomass
equation on modeling results showed that reactions from various pathways
in the underlying network, which had laid “dormant” before, were now ac-
tive. Our analysis also indicated the need for several essential fatty acids to
be supplied in the growth medium. Although the standard specification of
the medium does not include these compounds, we experimentally confirmed
their presence in complete, serum-containing growth medium. The data and
improved human metabolic model that result from this project are made avail-
able to the community, and represent what we hope to be an important step
on the path to a full understanding of human molecular physiology.

Results

The HL-60 biomass composition

To determine the biomass composition of HL-60 leukemia cells, we first exper-
imentally assessed the degree to which each major component (DNA, RNA,
lipids, carbohydrates, protein) contributes to total dry weight. We then exper-
imentally determined the subcomposition of the lipid and protein fractions,
estimated the DNA and RNA subcompositions from literature, and appointed
glucose as a representative of the carbohydrate fraction. For the “other” cat-
egory, of which the subcomponents are uncertain (and if they are known,
require individual assays for each subcomponent to measure), we assumed
a fraction of 5% of total biomass, which is in line with previous estimations
(Figure 6.1). The total lipid fraction, whose direct measurement proved elu-
sive, was estimated by subtracting the other fractions from one. The resulting
HL-60 biomass composition is shown in Table 6.1 and Figure 6.2, along with
the biomass reaction that is included in the Recon 2 reconstruction for com-
parison [50].

Table 6.1 shows that to an extent, the contributions of the main biomass
fractions are comparable between the HL-60 biomass equation and the one
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HL-60 biomass

Recon 2 biomass

DNA RNA Lipids Protein

a c g t a c g u (see table) (see table)

DNA
RNA
Carbohydrates
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Other
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Figure 6.2: Graphical comparison of the new biomass composition (top) with the one that is
included in Recon 2 (bottom). For the RNA subcomposition, the differences are likely due to the
sequence source used (i.e. in our case, rRNA; for Recon 2, it is unspecified but likely based on
the full genome sequence [50, 124]). The protein subcomposition in our biomass equation was
determined experimentally, which (partially) explains the slight differences between the two bars.
Although the individual amino acids are not annotated in the figure, the order and coloring is the
same. Since the subcomponents of DNA, RNA, and protein are the same in both models, these
differences are unlikely to have profound consequences for modeling results. However, the new
lipid subcomposition is clearly more complex, especially when the R-group components in the
Recon 2 biomass equation are disregarded, as shown.

in Recon 2. However, a disparity is apparent when the subcompositions of
the protein and lipids fractions are considered (Tables 6.2 and 6.3). For the
amino acid subcomposition, this could be due to the cell type (or organism)
under study, but for the lipid fraction, the difference is a product of our more
extensive subcharacterization.

Fraction of biomass (%)
Component HL-60 Recon 2

Total protein 66.38 70.6
Total lipids 9.7 9.7
RNA 3.88 5.8
DNA 1.48 1.4
Carbohydrates 13.56 7.1
Other 5.0 5.4

Table 6.1: Biomass composition of HL-60 cells, compared to the biomass composition used in
Recon 2 [46]. The values represent percentages of total dry weight. Details of the conversion from
weight fractions to stoichiometric coefficients are given in Materials and Methods.
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Amino acid subcomposition
(mmol of AA per g protein)

Component HL-60 Recon 2

Alanine 0.92 0.53
Arginine 0.48 0.36
Asparagine 0.43 0.43
Aspartic acid 0.43 0.81
Cysteine 0.18 0.57
Glutamine 0.58 0.22
Glutamic acid 0.58 0.21
Glycine 1.26 0.48
Histidine 0.37 0.75
Isoleucine 0.24 0.06
Methionine 0.22 0.49
Phenylalanine 0.19 0.17
Proline 0.49 0.54
Serine 0.57 0.74
Threonine 0.47 0.45
Tryptophan 0.13 0.48
Tyrosine 0.03 0.02
Valine 0.39 0.38

Table 6.2: Amino acid subcomposition of HL-60 cells (determined in this chapter) and the biomass
equation in the Recon 2 model. Values represent millimoles of each amino acid per gram of protein
in the biomass equation.

Towards a new biomass equation

A set of measurements does not a biomass equation make. Even after we con-
verted the measured data to a biomass equation (see Materials and Methods
for details), inserting it into Recon 2 did not make for a working model.

Recon 2 [50] is currently the latest, most comprehensive, and most popular
reconstruction of human metabolism. Following its initial release, it was
soon revised by its authors to address some problems with its use, including
carbon imbalances (i.e. reactions with differing numbers of carbon atoms on the
reactant and product sides). The resulting reconstruction is known as version
2.03, but it was only made available in a Matlab-based format, severely limiting
its accessibility.

More importantly, both Recon 2 and Recon 2.03 are reconstructions rather
than models. This means that although they look and behave like stoichiomet-
ric models, they should be interpreted as curated collections of reaction infor-
mation that can be used as starting points for building models. A model, then,
uses this network to simulate biological behavior; for instance, by specifying
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Component Species ID % w/w Stoich. coefficient

C10 M_dcacoa_c 0.01 0.0003
C11 M_undcoa_m 0.19 0.0101
C12 M_ddcacoa_c 0.08 0.0038
C13 M_tridcoa_m 0.01 0.0004
C14:0 M_tdcoa_c 3.82 0.1325
C15 M_ptdcacoa_m 0.22 0.0092
C16:0 M_pmt_c 9.31 0.3629
C16:1 M_hd_c 8.76 0.3444
C17 M_hpdca_c 0.18 0.0067
C18 M_st_c 15.97 0.5615
C18:1 (cis) M_ocdcea_c 24.80 0.8779
C18:1 (trans) M_elaid_c 5.86 0.2074
C18:2 M_lnlc_c 0.63 0.0226
C18:3 (α-linolenate) M_lnlnca_c 0.07 0.0024
C18:3 (γ-linolenate) M_lnlncg_c 0.07 0.0027
C20 M_arach_c 0.10 0.0031
C20:3 M_dlnlcg_c 0.44 0.0144
C20:4 M_eicostet_c 3.25 0.1067
C20:5 (EPA) M_5eipencoa_m 20.61 0.6814
C22 M_docosac_c 0.03 0.0009
C22:6 M_crvnc_c 2.17 0.0661
C24:1 M_nrvnc_c 0.05 0.0013
Other fatty acids — 0.88 —

Cholesterol M_chsterol_c 2.50 0.0647
Other sterols — BDL —

Table 6.3: Subcomposition of the lipid content of HL-60. For each lipid component, its contribution
to the total lipid fraction is shown as a weight percentage. We also show the species ID in the
model that corresponds to each lipid subcomponent, as well as its stoichiometric coefficient in
the lipids sub-reaction (= mmol per gram of lipids). Recon 2 is not shown for comparison here:
after removing the metabolites that only participate in unbalanced reactions, it only includes
cholesterol, and no fatty acids. BDL: below detection limit.

flux constraints based on external conditions like the nutrient concentrations
in the medium, or the availability of certain reactions. Being a reconstruction
rather than a model, when Recon 2 is simulated as-is, it produces biomass, but
upon closer inspection, it turns out that all biomass components can be freely
imported into the cell, and there is no need for the rest of metabolism to work.

Elemental balancing

Soon after its initial release, one of the authors of the original Recon 2 recon-
struction proposed Recon 2.1 as a carbon-balanced successor to Recon 2 [339].
Version 2.1 fixes the carbon balance and some other issues Recon 2 suffered
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from, but the other elements (H, O, N, P, S) may still have imbalances due
to the use of generic metabolites (metabolites with an R-group that symbol-
izes an unspecified tail of carbohydrates, acyls, etc.). Smallbone, the author
of Recon 2.1, realized this and proposed Recon 2.1x as a solution to this in
the same paper. He resolved the issue by enumerating (almost) all possible
instantiations of generic metabolites, but while the resulting reconstruction is
elementally balanced, at a whopping 71159 reactions, it is also too large to
handle using current-day software/hardware. Because we wanted to be able
to simulate the model after adding the new biomass equation, we had to find
another solution.

Since the elemental composition of each metabolite is provided in the
metadata of the reconstruction, we can identify imbalanced reactions in Recon
2.1 by comparing the elemental composition of each reaction’s left-hand side
and right-hand side. We detected 339 unbalanced reactions using this method,
and we disabled them in the model. Importantly, this operation revealed that
the Recon 2 biomass equation included seven metabolites with R-groups. By
removing them from the biomass reaction (instead of removing the biomass
reaction altogether; see Materials and Methods for details), we ensured we
could compare balanced models with functional biomass equations.

Medium specifications imposed by the biomass equation

Recon 2.1 has 1290 exchange reactions, which allow the model to consume or
produce 645 metabolites (import and export are split into separate reactions).
By default, they can all carry flux, which essentially means any biomass equa-
tion will “work”, because all components can just be imported. To begin to
make statements about the modeling implications of using a different biomass
equation, it is important to first determine which metabolites are essential,
meaning they must be supplied externally, and which metabolites can be pro-
duced by the cell from these external inputs.

Using a mixed-integer linear programming approach (see Materials and
Methods), we determined the smallest possible set of metabolites that is
needed to produce biomass, given Recon 2.1 with either its original biomass
equation (without R-group metabolites) or our novel one. As expected, the
resulting minimal media (Table 6.4) include essential amino acids, a source
of phosphate, and, in the case of the new biomass equation, a subset of the
fatty acids in the lipid subcomposition. We confirmed that the other lipids
could either be produced from these fatty acids, or from other metabolites.
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6. Biomass composition of human cells

The predicted minimal media do not include ions or vitamins, as they are not
included in the old or new biomass equation.

Both minimal media also include the peptide kinetensin, which is an un-
common find in this context. Kinetensin is a peptide whose amino acid se-
quence is Ile-Ala-Arg-Arg-His-Pro-Tyr-Phe-Leu [340]. This makes it an ef-
ficient source of essential amino acids, as importing kinetensin means that
phenylalanine and leucine need not be imported separately anymore. It is also
a very rich carbon and nitrogen source. Therefore, the presence of kinetensin
in the computationally determined minimal media is a consequence of the
method used to determine said media, rather than of a biological property of
the metabolic network.

Component Recon 2 New biomass eqn

Histidine X X

Isoleucine X X

Lysine X X

Methionine X X

Threonine X X

Tryptophan X X

Valine X X

Kinetensin X X

Phosphate X X

Margaric acid (C17) X

Linoleic acid (C18:2) X

α-linolenate (C18:3) X

Behenic acid (C22) X

Nervonic acid (C24:1) X

Table 6.4: Minimal media requirements of the Recon 2 model with its original biomass reaction
and with the new biomass equation. If a metabolite is in the set of minimal media requirements for
a model with a particular biomass equation, this is indicated by a check mark. The new biomass
equation adds requirements on lipid intake, which were absent in the original model.

Comparing simulation outcomes using both biomass equations

Although we can also simulate a kinetensin-free medium by adding the other
essential amino acids, since both minimal media contain the peptide, we first
compared the implications of each biomass equation on the metabolic net-
work that lies between the consumption of metabolites and the production
of biomass. Since we already know that the model will grow when supplied
with its minimal medium, we can proceed directly to a flux variability analy-

96



0
�ux

flux ≥ 0
flux ≤ 0
�ux > 0
�ux < 0
�ux in either direction
other (n/a)

no �ux possible

# rxns (Recon 2.1) # rxns (new)FVA �ux category

4297 4330

197 246
22982578

49 223
8 75

960 893
7 30

(minimal medium) Di�erences by subsystem

Fatty acid-
related

Transport

Exchange

28 other subsystems

Unassigned

BA

Figure 6.3: Summary of FVA results when simulating a minimal medium and using either the
Recon 2 biomass equation or our new one. (A) Based on their minimum and maximum flux values,
reactions can be categorized into those that cannot carry flux, those that can optionally carry flux
in one direction, those that must carry flux in a certain direction, those that can (optionally) carry
flux in either direction, and reactions for which the analysis is infeasible of nonsensical. For each
of these classes, the number of reactions that belongs to them in both versions of the model is
shown. (B) For those reactions that must carry a nonzero flux when using one biomass equation,
but not when using the other, we evaluated the subsystem this reaction was annotated with. The
model with the new biomass equation requires almost five times as many reactions to be active
compared to the old biomass composition, and fatty acid oxidation and synthesis and intracellular
transport reactions cover about half of these differences.

sis (FVA) and find the minimum and maximum flux for each reaction, given
optimal biomass production. For each reaction, this now gives an indication
of its importance to the network: can it carry flux in the first place? If it can,
in which direction, and is this mandatory? Maybe it can carry flux in both
directions (Figure 6.3A)?

We categorized reactions based on these properties. Among the result-
ing categories, the most interesting ones are those containing reactions that
must carry flux in some direction. Interestingly, this number is much larger
when using the new biomass equation, compared to the old one (Figure 6.3A,
highlighted values).

We examined the annotations of these reactions, and unsurprisingly, found
that the subsystems associated with fatty acid oxidation and synthesis were
strongly represented among the reactions that must carry flux when using the
new biomass equation, but not when using the old one (Figure 6.3B). Therefore,
we can conclude that using the more complex new biomass equation has
an impact on the flux distribution of the underlying network, particularly
in subsystems related to exchange, transport, and fatty acid oxidation and
synthesis.
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Figure 6.4: Summary of FVA results when simulating RPMI 1640 medium, augmented with
essential fatty acids (RPMI 1640+) and using either the Recon 2 biomass equation or our new
one. (A) Based on their minimum and maximum flux values, reactions can be categorized into
those that cannot carry flux, those that can optionally carry flux in one direction, those that must
carry flux in a certain direction, those that can (optionally) carry flux in either direction, and
reactions for which the analysis is infeasible or nonsensical. For each of these classes, the number
of reactions that belongs to them in both versions of the model is shown. (B) For those reactions
that must carry a nonzero flux when using one biomass equation, but not when using the other, we
evaluated the subsystem this reaction was annotated with. Increased use of fatty acid oxidation
and synthesis pathways, due to the increased complexity of the lipid fraction in our new biomass
equation, explains the vast majority of these differences.

Simulating a more realistic medium reduces the number of
differentially activated subsystems

As we stated above, simulations with kinetensin as a medium component are
unlikely to represent a realistic situation. HL-60 cells are normally cultured in
RPMI 1640 medium, supplemented with fetal bovine serum. While it is not
known exactly what is in the serum part of the medium, the base formulation
of RPMI 1640 is common knowledge: in a nutshell, it contains amino acids
(including all essential ones), glucose, and various vitamins, cofactors, and
salts.

We repeated the flux variability analysis described above with RPMI 1640
instead of an artificial minimal medium. The fatty acid requirements our new
biomass equation imposes were met by supplementing the simulated RPMI
1640 with five fatty acids that we determined as essential to growth of the
(new) model (Table 6.4).

When using our modified RPMI 1640 medium (“RPMI 1640+”), the re-
sults of an FVA comparison between models with the old and new biomass
equations are largely comparable to the situation with the computationally
determined minimal medium (Figure 6.4A). As expected, the more complete
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(base) formulation of RPMI 1640 translates to an overall need for fewer flux-
carrying reactions.

However, the reactions that must carry flux when using the new biomass
equation but not when using the old one show a much clearer distribution
across annotated subsystems. The vast majority of the affected reactions is
now associated with fatty acid oxidation or synthesis, with a minor role for
intracellular transporters (Figure 6.4B).

Moreover, the number of different subsystems the affected reactions are
classified in when using the RPMI 1640+ medium is vastly smaller than in
the simulations with a minimal, kinetensin-containing medium. In the former
case, only a single subsystem was not exchange-, transport-, or fatty acid-
related (the exception was “valine, leucine and isoleucine metabolism”, which
contained 2 reactions), whereas with the minimal medium 28 other subsystems
contained 92 reactions.

Because of their essentiality for growth in simulations, we hypothesized
that the essential fatty acids we added to the simulated medium are included in
real-world growth medium through the addition of serum. Indeed, when we
sampled complete culture medium and determined its lipid subcomposition,
we found substantial concentrations of each of the five essential fatty acids.
The amounts of the fatty acids in the medium, as a weight percentage of
total lipids, ranged from 22% to 83% of the relative amount in the HL-60
samples, indicating the cells selectively that them up during the course of
their growth. This finding justifies their inclusion in these simulations, but
also shows the potential of a biomass-based approach for determining the
molecular requirements of growth.

Combined with the results of our simulations using the minimal media,
this result illustrates the importance of a detailed biomass equation as well as
a realistically defined medium: it is easy to overlook entire pathways if there
is no demand for them to be functional, and conversely, an overly minimal
medium may lose touch with biology by requiring unrealistic activity in exotic
pathways.

Discussion

Biomass requires balance

An understanding of cell growth and hyperproliferative disease is contingent
on an understanding of what cells are made of. In an effort to bring this goal
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6. Biomass composition of human cells

closer, we have presented a more detailed human biomass composition than
any other that we were aware of. Perhaps unexpectedly, its mere inclusion in
Recon 2.1 already revealed places in which our current model of metabolism
diverges from physiological reality.

A major culprit is the elemental imbalance in the Recon 2 reconstruction.
Although this issue has been identified before and a solution proposed [339],
our solution of removing all unbalanced reactions yields the first Recon 2-
derived model that can be used in practice.

Unfortunately, the imbalance also extended to Recon 2’s biomass equation,
as it too includes R-group metabolites. This property seems to have been
introduced in a Recon 1-based model published by Folger et al. [160], and
carried over to later versions of the human metabolic reconstruction [50]. The
specific composition of these glycophospholipid biomass components is an
important piece of information that genome-scale models would clearly benefit
from, but as Smallbone demonstrated [339], the combinatorial aspect their
specification entails is an adversary to be reckoned with: the almost-complete
specification of these compounds grew the model to ∼71000 reactions.

Even so, we expect that further increasing our understanding of the specifics
of human biomass is a great way to improve the predictive power of human
metabolic models, by shedding light on the state of various pathways that
would go unused if these biomass components are ignored.

Growing awareness of medium in simulations

Besides biomass production, an output variable, the other major determinant
of the outcome of model simulations is which metabolites the model can
consume, on the input side. In other words, to which medium components
should the simulated cells have access?

In microorganisms, this question is commonly asked, as FBA is often used
to either optimize growth or the production of a biotechnologically interesting
metabolite given some environment [329,341]. In contrast, for reconstructions
and models of human metabolism, a variety of approaches are found in recent
literature.

Recon 1, 2, and 2.1 are reconstructions rather than models, so they contain
no predefined medium, and all exchange reactions are available [50, 155, 339].
Bordbar et al. produced cell-type specific reconstructions that were studied
with respect to each other, but not so much with respect to the environ-
ment [164]. Nevertheless, although the authors do not describe the medium in
detail, the number of exchange reactions in the models is kept low and seems
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well thought out. Interestingly, they include exchange reactions for many of
the fatty acids our analysis identified as essential for biomass production in
Recon 2.1.

Shlomi et al., on the other hand, took a structure-driven approach, and pre-
dicted exchange fluxes based on the activity of enzymes in the network [331].
Ågren et al. automatically constructed tissue-specific models, similar to the
Recon 2 approach, but did not include a biomass equation and therefore for-
went the medium specification as well [158]. Jain et al., in constrast, focused
primarily on the production and consumption of medium components [45].
The resulting data set spans sixty cell lines, and is of great value in the context
of tissue-specific modeling. The leukocyte-based biomass equation we present
here can be viewed as a contribution in the context of this tissue-specific fu-
ture; however, cell type-specific models based on Recon 2.1 have yet to be
developed. Ideally, these will include cell type-specific biomass equations.

Folger et al. also specify the medium they simulated [160]. The model
presented in their paper, uses RPMI 1640 (as well as the mouse hybridoma
biomas equation that found its way into Recon 2 [46, 50]), but in contrast to
our approach, it only specifies the components of the medium and not their
quantities relative to each other.

With our analysis, we aimed for a hybrid computational/experimental ap-
proach. By first looking at the model structure to discover what the model
needs to grow, and then comparing this to the metabolites we know are in the
medium, we could deduce which other, unseen medium components exist,
and confirm this experimentally. We expect that medium and biomass-based
approaches will be of increasing importance in the future, as models of human
metabolism become more detailed and therefore more dependent on knowl-
edge about their exchanges with the environment.

Going from reconstructions to cell-type specific models

The biomass composition we present here was determined in the HL-60
promyelocytic leukemia cell line [337]. Although we focused on this as a pri-
mary objective, an obvious direction for future work is to compare these cells
to, say, carcinomas, differentiated HL-60 cells, or healthy leukocyte samples.
The experimental challenge this presents is quite surmountable, but to be able
to properly compare cell types, cell type-specific models must also be devel-
oped. Various methodologies have been proposed to do this [50,158,164,342].
Most are somehow based on gene expression data; however, there is no con-
sensus as to which method is the best.
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6. Biomass composition of human cells

Whichever methodology ends up finding broad adoption by the commu-
nity, we expect that the structure of a cell type-specific network, combined
with a demand-driven approach like the one we present will yield valuable
insights in the metabolic properties of various tissues. Data like the biomass
composition we present here, as well as the metabolite profiles produced by
Jain et al. [45], are instrumental in this endeavor, as we will sooner or later
reach the limitations of what can be done using structural analyses. In the
end, there is no substitute for biochemical experimental knowledge, just like
the structural findings we present here would have been meaningless without
a fully human biomass equation.

It is evident that the first fully human biomass equation we present here
is a resource upon which the community can build in a wide variety of future
projects. We have used it to check, improve, and instantiate Recon 2.1, the
current state of the art in modeling human metabolism, and have made the
resulting model available for download at http://www.joostboele.nl/thesis/.
Together, the two resources can be built upon to optimize the predictive power
of human genome-scale metabolic modeling approaches, and improve our
understanding of human molecular physiology.

Materials and Methods

Determination of the HL-60 biomass composition

Cell culture, cell count, and dry weight determination

HL-60 human promyelocytic leukemia cells were obtained from the European Col-
lection of Cell Cultures, and maintained in RPMI-1640 medium (PAA) with 8% fetal
bovine serum (PAA) and 1% Penicillin/Streptomycin (PAA).

The cell density of cultures was determined using a Bio-Rad TC-20 Cell Counter.
To determine the amount of dry weight per volume of culture, a known volume of
sample was filtered using 1µm nitrocellulose filters (Whatman), and the weight of the
filters before and after filtration compared using a Sartorius 4503 Micro scale.

Total protein content and protein hydrolysis

The cells were lysed with 1% Triton X-100, 50 mM HEPES, pH 7.4, 150 mM NaCl, 1.5 mM
MgCl2, 1mM EGTA, 100 mM NaF, 10 mM Na pyrophosphate, 1 mM Na3VO4 and 10%
glycerol, containing freshly added protease and phosphatase inhibitors. Total protein
content was then determined colorimetrically using the bicinchoninic acid (BCA) assay
(Pierce).
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The contribution of the individual amino acids was determined by first hydrolysing
the protein by keeping the samples in 6M HCl at 115◦C for 24h, and then measuring
the amino acid concentrations in the hydrolyzed samples using the GC/MS method
described below.

Amino acid subcomposition GC/MS analysis

Extraction and derivatization of the amino acids were performed with a commercially
available kit according to the instructions of the manufacturer [343]. Briefly, 100µL
of sample including 13C internal standards was mixed with Reagent 1 in order to
adjust pH and add the internal standard (norvaline). The mixture was slowly passed
through sorbent tip and washed with Reagent 2. Then, 200µL of freshly prepared
eluting medium was used to elute sample and sorbent from the tip. In the next step,
derivatization reagent (Reagent 4) was added to the mixture and the sample was
vigorously vortexed. Finally, 100µL of Reagent 5 containing isooctane was added to
sample in order to separate different phases after vortexing, and we collected the top
(organic) phase.

The derivatized samples were analyzed with a GC-2010 gas chromatograph (Shi-
madzu), equipped with injector AOC-20i (Shimadzu) and autosampler AOC-20s (Shi-
madzu) which was coupled to a GCMS-QP2010 Plus with an electron ionization source
(Shimadzu). One microliter of derivatized sample was injected onto a ZB-AAA column
(10 m x 0.25 mm ID with a film thickness of 0.25 µm). The injection port, equipped with
a GC liner for Shimadzu 17B (deactivated, Phenomenex), was set to split ratio 30 and
held at a temperature of 250◦C. The column oven temperature was initially set at 110◦C
and then raised to 320◦C at a rate of 30◦C/min. Helium was used as carrier gas with
a gas flow of 2 mL/min. The interface (GC to MS) was at temperature 320◦C and the
ion source at 240◦C. Electron ionization was operated with 70 eV. For quantitative mea-
surements, the MS was used in selected ion monitoring (SIM) mode. All analyses were
performed in duplicate. 13C-15N labeled amino acid standards were added as internal
standard to both samples and calibration standards for IDMS-based quantification.

The results included concentrations for most amino acids, but did not include
arginine, cysteine, tryptophan. For these amino acids, their relative contributions to
total protein were estimated based on protein sequence data. Also, due to the HCl
treatment, asparagine in the original samples was measured as aspartic acid, and
glutamine as glutamic acid, so the measured concentration of aspartic acid was split
evenly between asparagine and aspartic acid, and of glutamic acid between glutamine
and glutamic acid.

Carbohydrates

Since we are interested in the total of all carbohydrates in the cell, commonly used
enzymatic assays are too specific for our purposes. Instead, we determined the car-
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6. Biomass composition of human cells

bohydrate fraction using the colorimetric phenol-sulphuric acid method, similarly to
previous biomass composition determinations in prokaryotes [329]. We scaled down
the assay to economize reagents, used the reagent proportions described by Masuko
et al. [344], and performed the assay in glass labware to minimize the background
signal. We measured the samples at 488 nm; because the absorption spectra of various
carbohydrates overlap, measuring at this wavelength gives a fairly complete overview
of the total abundance of carbohydrates in the sample.

RNA and DNA

RNA was isolated from samples using the acid phenol/chloroform extraction proto-
col protocol, treated with DNAse-I and then quantified using a NanoDrop ND-1000
(Thermo Scientific), which yields an RNA concentration in ng/µl. The RNA subcompo-
sition was then determined by assessing the contribution of each nucleotide (A, C, G,
and U) to known human ribosomal RNA sequences (28S, 18S, 5.8S, 5S; accession num-
bers NR_003287.2, NR_003286.2, NR_003285.2, NR_023379.1, respectively) relative to
the total number of nucleotides in these sequences. We used ribosomal RNA, as this
class of RNA composes the vast majority of the total RNA fraction in proliferating cells.

DNA was isolated using the phenol/chloroform extraction protocol, and then quan-
tified using a NanoDrop ND-1000 (Thermo Scientific), which yields a DNA concen-
tration in ng/µl. The DNA subcomposition was then determined by assessing the
contribution of each nucleotide (A, C, G, and T) to the hg19 assembly of the human
genome sequence, and averaging the contributions of A and T, and C and G, to account
for basepairing.

For both RNA and DNA, of each (deoxy)nucleotide, the triphosphate form is in-
cluded on the reactants side of the biomass equation. The diphosphate that is released
when a DNA or RNA molecule is elongated by one nucleotide is included on the prod-
uct side. When determining the molecular weight of DNA and RNA in the biomass
composition, the molecular weight of all nucleotides was reduced by the weight of one
diphosphate.

Total lipid content and lipid subcomposition

Due to difficulties directly measuring the lipid fraction in total biomass, it was calcu-
lated by subtracting all other fractions from one. This yielded a lipid fraction of 9.7%,
which is consistent with earlier biomass determinations in mammals. While taking
samples for the lipid assays, we took care to avoid plastic disposables to minimize
leeching of lipid compounds to/from them.

To determine the lipid subcomposition, we spun down ∼2·106 cells and washed
the pellet twice with PBS. The sample was then diluted 4x with ice cold methanol and
stored at -80◦C until use.
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The fatty acid and sterol quantification was performed as follows. First, 2.5 µL
of sample was mixed with 180 µL of MeOH and 2 0µL of water. 70 µL of 6 N HCl
was added, after which 10 µL internal standard (IS) was added. Lipid extraction was
carried out by adding 1 mL of n-hexane. After vigorously shaking the sample for 30 s,
the n-hexane layer was transferred to a 1.5 mL glass vial and concentrated to dryness
under a gentle stream of nitrogen. The procedure was repeated and the organic extracts
were combined.

Dried samples were derivatized using 25 µL of MtBSTFA for 10 min at room
temperature. Subsequently, 25 µL of BSTFA (1% TMCS) and 2.5 µL of pyridine were
added and the sample was heated for 15 min to 50◦C. Next 947.5 µL of n-hexane,
containing 10 µg/mL octadecane (C18) as system monitoring component, was added.

A Scion TQ GC-MS system from Bruker (Bremen, Germany), equipped with a
Bruker BR5-MS 15 m × 0.25 mm × 0.25 µm column was used. The injector was held at
280◦C. The injection volume was 1 µL for selected ion monitoring (SIM) and 2 µL for
isotopologue analysis (splitless). The temperature program was kept at 90◦C for 0.5
min, then ramped with 30◦C/min to 180◦C, then to 250◦C with 10◦C/min, then to 266◦C
with 2◦C/min, and finally to 300◦C with 120◦C/min, kept for 2 min. Helium (99.999%)
was used as carrier gas at a flow rate of 1.2 mL/min. All analyses were carried out using
EI at 70 eV. For validation and quantification purposes, SIM analysis was applied. For
isotopologue analysis, a scan window from the monoisotopic SIM value up to +15 m/z
units was measured in a window of ± 0.3 min around the retention time of the target
component.

Composing the biomass equation

To compose a biomass equation for use in models that use (milli)moles as a unit,
and not “percentage of dry weight” (which would indeed be of very limited use in
genome-scale models), we processed the data as follows.

To reflect that the biomass equation is initially determined by quantifying its compo-
nents in broad categories, the biomass equation itself simply specifies these categories
as fictitious metabolites, with their stoichiometric coefficients equal to their respective
contribution to a gram of biomass. Thus, the biomass equation simply states that a
gram of biomass consists of e.g. 0.036 grams of RNA, etc.

For this to work in a model that uses millimoles as a primary unit, a transformation
to this unit is required, and this takes place at the level of the broadly categorized
biomass components. As the subcomponents of these components (and their relative
quantities and molecular weights) are known, we can calculate the molecular weight of
1 (milli)mole of this component. For instance, RNA is composed of adenine, cytosine,
guanine, and uridine, and their relative contributions to the RNA fraction are known.
Thus, we can calculate the weight of “1 RNA” by multiplying these relative contribu-
tions by the molecular weight of each nucleotide. By scaling the result of this step to 1

105



6. Biomass composition of human cells

MW

RNA fraction: 0.038 g gDW-1

FractionComponent

Correct for
PPi, MW: -143.96

Rel. contrib.
ATP 0.176 507.18 63.825
CTP 0.315 483.16 106.752
GTP 0.341 523.18 129.227
UTP 0.169 484.14 57.420

357.225 mg
+

Scale fractions by 0.357-1
to produce 1 g RNA

MWFractionReactant Rel. contrib.
M_atp_c 0.491 507.18 178.670
M_ctp_c 0.881 483.16 298.838
M_gtp_c 0.954 523.18 361.754
M_utp_c 0.473 484.14 160.738

1000.000 mg
++

2.916

Product

M_ppi_c 2.916
M_RNA 1.000

Include 0.038 (g) M_RNA 
in biomass equation

Figure 6.5: Conversion of the (known) composition of a biomass fraction to one gram of that
fraction for inclusion in the biomass reaction. In the case of RNA, for each nucleotide, we first
multiply its relative contribution to total RNA (in this case, determined from rRNA sequence) by
its molecular weight. Since polymerization of nucleotides into RNA results in a pyrophosphate
(PPi) being expelled, the molecular weight of PPi must be subtracted from the nucleotide’s before
multiplication. The sum of these products is the weight of one fictitious millimole of RNA. When
all fractions are scaled by the inverse of this number and the calculation is repeated, the result
will be 1 gram of RNA. In our case, we know we need 0.038 gram of RNA per gram of biomass,
so we can simply include 0.038 “RNA” in the biomass reaction. The subcompositions of the other
biomass components were converted and modeled in a similar fashion.

gram, we can intuitively add fractions of this “gram of RNA” to total biomass, and do
the same for all other components (Figure 6.5).

For biomass components that are polymers (proteins are polymers of amino acids,
RNA and DNA are polymers of NTPs and dNTPs, respectively), the production of
these polymers results in the exclusion of water or diphosphate from the participating
monomers. As a result, the molecular weight of a monomer is reduced by the weight
of the excluded parts once it is included in the polymer, and we took this into account
when performing the transformation from biomass components to biomass.
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Including the energy requirements for maintenance and proliferation

To account for the energy cells expend for maintenance and for the anabolism of biomass
components, biomass equations typically include an ATP requirement. The 1969 paper
on this topic by Kilburn et al. is a prominent resource for this information [338], as
evidenced by its pervasive use in genome-scale modeling. Kilburn et al. report an ATP
requirement of 1.6 x 10−11 mole per cell for proliferating cells, which includes both
maintenance and proliferation. By multiplying this number by the cell count per mL
of culture, and then dividing by the measured dry weight (in grams) per mL of culture,
we arrive at an ATP requirement of 154 mmol gDW−1. This figure, although it may
seem large at first, is consistent with what is used in previous biomass equations, as
the ratios between it and the stoichiometric coefficients of other biomass components
are comparable.

Inclusion of the biomass equation in Recon 2.1

We included the new biomass equation in the Recon 2.1 model in the form of five sub-
reactions (DNA, RNA, lipids, protein, and carbohydrates) and one biomass reaction in
which they and the ATP requirement for maintenance and proliferation come together.
Each subreaction produces a gram of the respective biomass component (e.g. RNA)
from its subcomponents (in the case of RNA, ribonucleotides; see Figure 6.5 for an
example). This way, the fictitious metabolite (“RNA”) can then be included in the final
biomass reaction in the desired quantity (in grams).

For the purposes of our study, the model’s objective was changed to maximization of
flux through the new biomass reaction, and constraints on it and its subreactions were
set to make them irreversible. To ensure the more detailed new lipid requirements
for biomass productions could be met, five essential fatty acids were additionally
specified to be in the medium (that is, the constraints on their exchange reactions were
set to allow importation of these lipids). These fatty acids were margaric acid, linoleic
acid, α-linolenate, behenic acid, and nervonic acid (Table 6.4). The resulting model,
which we used for the remainder of the analyses described in this chapter, comprises
8095 reactions and 9209 metabolites. We have made it available for download at
http://www.joostboele.nl/thesis/.

Modeling analyses using the modified human model

To compare the effects of using a new, more detailed biomass equation to using the
old one, we took the following approach. All simulations were performed using the
Python Simulator for Cellular Systems (PySCeS) [147]. First, we disabled all reactions
that were not elementally balanced, and removed seven metabolites from the old
biomass equation that had become dead ends because of this process.
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Identifier Description in model Chemical formula in model

M_clpn_hs_c Cardiolipin C9H16O9P2(RCO2)4

M_pail_hs_c 1-phosphatidyl-1D-myo-inositol(1-) C9H16O9P(RCO2)2

M_pchol_hs_c Phosphatidylcholine C8H18NO4P(RCO2)2

M_pe_hs_c Phosphatidylethanolamine C5H12NO4P(RCO2)2

M_pglyc_hs_c Phosphatidylglycerol(1-) C6H12O6P(RCO2)2

M_ps_hs_c Phosphatidylserine C6H11NO6P(RCO2)2

M_sphmyln_hs_c Sphingomyelin betaine C23H48N2O5P(RCO)

Table 6.5: R-group metabolites in the original Recon 2 biomass equation. As all reactions these
metabolites participate in are unbalanced by definition, they were removed from the biomass
reaction in order to perform the analyses described in this chapter. Metabolite identifiers, de-
scriptions and chemical formulae are taken from the Recon 2 SBML file. For readability, in the
chemical formulae, “FULLRCO2” and “FULLR2CO2” are shortened to “RCO2”, and FULLRCO
is shortened to “RCO”.

Then, to be able to compare growing models, we determined a minimal medium
that would sustain growth with the selected biomass equation as the objective function.
We then performed a comparative FVA as described below.

We repeated the entire analysis using RPMI 1640 augmented with five essential
fatty acids (RPMI 1640+) as the growth medium, instead of the bare-bones minimal
medium we determined earlier.

Removal of elementally unbalanced reactions

Using the fbc:chemicalFormula attribute of each species (which in turn derived from
the FORMULA field in the notes nodes of Recon 2) and the stoichiometric coefficients in
each reaction, we determined the number of atoms of each element on each side of the
reaction. If for any element the number of atoms was not the same on both sides of the
reaction, the reaction was flagged as unbalanced and disabled by setting its upper and
lower bounds to zero.

We did not disable the original biomass reaction (which strictly speaking was also
unbalanced), because we wanted to compare our new biomass equation to it. Instead,
we removed from its reactants side the seven R-group metabolites which caused the
imbalance, since no non-R-group equivalents to these molecules could be found in the
model. The metabolites removed from the biomass equation are shown in Table 6.5.
It should be noted that removing these lipids from the biomass equation does not
substantially affect the analyses described here or the results displayed in Figures 6.3
and 6.4, as these metabolites can only be produced using unbalanced reactions (i.e.,
they can be made “out of thin air”) or directly imported from the environment (which
does not affect the flux distribution, as it bypasses metabolism). The resulting biomass
reaction was functional and balanced, albeit slightly leaner than before. In total, 339
(out of 8095) reactions were disabled because of elemental imbalances.
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Determination of the minimal medium for a given model

A “minimal medium” is one that has the fewest components. However, in order
to properly model this we need to first quantify “fewer”. One classical approach,
generally applied to internal fluxes, is that of “flux minimization” which assumes that
a cell has to produce more protein (enzyme) in order to carry a larger flux through
a reaction. Therefore for a cell to be efficient, for any particular optimal objective
function (e.g. max growth), there exists a solution which minimizes the maximal flux
of each reaction needed to achieve that optimum. Practically, this is implemented by
minimizing the sum of absolute fluxes, which allows this to be applied to reversible
reactions without bias towards the reverse reaction. Generally, flux minimizations
are relatively simple to calculate using a linear program (LP), and the procedure is
implemented in most CBM/FBA software.

Modifying this method slightly to only minimize a selected set of transporters
(e.g. 300 potential uptake reactions) does result in a minimal medium; however, we ob-
served that the algorithm resulted in a significant number of transporters each carrying
a small flux. If one considers that, in general, transporters are large, multimeric protein
complexes that are expressed in relative low numbers (relative to metabolic enzymes),
and that they are not easily saturated with substrate, then it seems highly unlikely that
a “large number of low flux carrying transporters” strategy would be adopted by the
cell.

As an alternative, we propose that it is more likely that the cell minimizes the num-
ber of active transporters used to achieve a specific objective rather than the combined
flux passing through them. We therefore define a minimal medium as a medium which
requires the smallest number of active transporters (uptake reactions) needed to satisfy
a particular objective (in our case, biomass production).

We can algorithmically generate such a minimal medium by using a mixed integer
linear program (MILP). In addition to the standard FBA LP formulation (constraints
and flux bounds, cf. Equation 1.7), we introduce binary variables (zi) to control whether
a flux is on (a non-zero flux) or off, and a constraint that fixes the objective to a specific
target value (Jopt ≥ optarg). This MILP is described in Equation 6.1 and is analogous to
an approach used in [345].

minimize
∑i

1 zi

such that:

NJ = 0

Jopt ≥ optarg

zi = 0→ Ji = 0

lbn ≤ Jn ≤ ubn

zi ∈ {0 : 1}

(6.1)

The solution space of this MILP includes exchange reactions that must always be
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6. Biomass composition of human cells

part of the minimal medium, and/or sets of exchange reactions that can be substituted
for one another. An example of the latter is the requirement for a phosphate source: the
cell can consume inorganic phosphate, but ATP and many other phosphate-containing
molecules would be adequate as well. In such cases, we selected the metabolite that
made the most sense from a biological point of view to be part of the minimal medium.

Comparative flux variability analysis

With a minimal medium determined for models with the old or new biomass equation,
we then performed an FVA on each of these models, with as input flux bounds only their
respective minimal medium. Based on the results, each reaction was then categorized
into one of the following classes: reactions that cannot carry flux under these conditions,
reactions with flux ≤ 0, reactions with flux ≥ 0, reactions with flux < 0, reactions with
flux > 0, reactions with lower bound < 0 and upper bound > 0, and reactions that
either returned an infeasible status when performing the FVA or whose minimum and
maximum fluxes were moot (e.g. the biomass equations and their subreactions).

For the categories of reactions that must carry flux in one direction or the other (flux
< 0 or > 0), we then determined which reactions had this property in the FVA results
of one model but not of the other. Of these reactions, we looked up the annotated
subsystem in the model, to get an indication of the structural differences between the
models with different biomass equations.

Since the minimal medium we determined was indeed quite minimal, and con-
tained a peptide that is rarely on the menu for human cells in culture (kinetensin), we
repeated the analysis after setting the exchange reaction constraints to mimick RPMI
1640 medium. To do so, the ingredients of RPMI 1640, as reported by the manufacturer
in g/l, were converted to mM, and the essential lipids our earlier analysis identified were
added to the simulated medium to ensure both biomass reactions would be supported.
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The state of the art in systems biology

The chapters in this thesis tell of microRNAs, of sequencing, signaling, and
stoichiometric modeling, of biomass and tools. Despite their obvious differ-
ences, these topics have one thing in common: the systems they tie into are
relevant to cellular function (or dysfunction). But if we zoom out to look at the
bigger picture, they also tie into each other. In this final chapter, we will revisit
some of these earlier topics, and view them in the context of systems. . . and
cancer.

Let us begin our recapitulation of the subfields of systems biology in
this thesis on familiar ground. Since its first application, the analysis of
genome-scale metabolic models (GSMMs) has led to valuable insights for
a wide variety of species (see Chapter 1 and e.g. [151, 153, 164, 284, 334]). Of
course, Homo sapiens is among the species for which GSMMs have been recon-
structed [50, 155–157], and studies like those by Folger and Shlomi [160, 161]
have successfully harnessed existing knowledge to facilitate the generation of
new knowledge.

The insights gained from genome-scale modeling include suggestions on
how to use new combinations of existing pharmaceuticals to combat can-
cer [160], but as we described in Chapter 6, to date, all genome-scale modeling
approaches to human metabolism have ultimately used a mixture of human
and non-human data from various sources to make up the model’s final ob-
jective: the production of biomass. While the use of biomass as the be-all and
end-all of objectives is certainly debatable (see e.g. [163]), there can be no doubt
that the availability of any non-composite fully-human biomass equation will
enhance our understanding of human metabolism.

When we inserted our new biomass equation into the Recon 2 reconstruc-
tion and tried to import or produce all components, we already ran into some
issues. Notably, there were elemental imbalances in many reactions in Recon 2,
as well as in Recon 2.1. Perhaps surprisingly, these issues were known, but
the recently proposed solution, Recon 2.1x, while technically correct, made the
reconstruction so large it became unwieldy, and ended up replacing one prob-
lem with another [339]. An alternative, crowd-driven curation method was
recently proposed by the IMPROVER project team [346], and such ongoing
initiatives are more likely to be a future-proof solution to the technical issues
we encountered.

Model usability aside, the choice of biomass equation influences model-
ing results on a more biologically fundamental level. Using a more detailed
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biomass equation requires the activation of various biosynthetic pathways, in
addition to those the old biomass equation required. This is not surprising, as
the more complex biomass equation just places more demands on the under-
lying network, but it is important that we gain a quantitative understanding
of these differences and their consequences. These differences can be stud-
ied by characterizing more biomass components (e.g. of glycophospholipids)
and their connections to the underlying networks [339]; their consequences
become visible through gene or metabolite profiling (e.g. [45]).

In recognition of the pivotal position that abundant high-throughput data
have recently acquired in systems biology, I have mostly adopted a top-down
perspective on metabolism throughout this thesis. Data of this kind have
found their way into current-day metabolic models, for instance, in the form
of gene-protein-reaction (GPR) relations [124]. GPR relations codify which
gene produces a given protein, and which reaction this protein can perform
(either by itself or as part of a complex), so that genotype can be linked directly
to phenotype. The practical applicability of this information has so far been
limited, primarily because the availability of data is not yet at the point that
the genotype of individuals can be easily linked to their metabolic phenotype.

The GPR framework could extend to models of signaling/miRNA regula-
tion, as these models describe what happens between genes and proteins, a
conversion that is usually taken for granted in metabolic models (the step from
proteins to reactions, on the other hand, has been explicitly modeled [136]).
Unfortunately, our knowledge of the topology of the cell’s regulatory net-
works is lacking in some places, and our knowledge of the dynamics of these
networks is lacking in many places, especially where crosstalk enters the pic-
ture. To make matters more complicated, we do not know exactly where
our knowledge lacks. Therefore, creating a model that includes transcription,
translation, and the reaction that is eventually performed, as well as the reg-
ulatory processes that influence these phenomena, is currently still a utopic
vision.

But even if we were already there, the GPR framework would still require
a(n arbitrary) preprocessing step to go from expression data to something
that would fit the gene layer. The OME-matrix, the prokaryotic alternative,
explicitly models this expression dimension, and has so far come the closest to
providing a link between the dynamics of regulation and the relatively static
structure of the metabolic network. It does so by providing a framework
in which interactions between operons, metabolism, and expression can be
formalized [136].
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Regulation is more complex in mammals, though. The well-known central
dogma of molecular biology holds that “DNA becomes RNA becomes protein”
[347] (Figure 7.1), and we have known for decades that regulatory proteins can
influence the transcription of DNA to RNA [348]. So far this could fit into an
OME-like framework, but more recent discoveries have indicated that small
RNAs can perform similar roles, and that these small RNAs, like proteins, are
themselves subject to regulation [349, 350] (Figure 7.1). While this does not
violate the central dogma, the two-way nature of these checks and balances
does preclude them from being properly represented using the GPR or OME
frameworks without major data (pre)processing.

Traditional frameworks are definitely not prepared for the layer of micro-
RNA regulation. In Chapter 2, we describe a novel mechanism by which the
abundance of microRNA-21 is regulated in an isoform-specific manner. Since
miRNAs are generally thought of as stable molecules [351], this finding sheds
new light on the regulation of the regulators, and it is fair to ask what this
means for systems biology. The answer is deceptively simple. Simple, be-
cause if there is an additional layer of regulation, then it should (eventually)
be added to our model of cellular function. Deceptively simple, because we do
not yet have any model that can encompass all the “old” modes of regulation
— at least not all at once.

But now that we know of this additional layer’s existence, we will want
to somehow determine its significance, either through experimentation or
through computational estimation (i.e. systems biological methods). Given
the modest effect on gene expression we observed (see Figure 2.4A), it is
unlikely that the addition of this extra layer to regulatory or metabolic models
would make a difference to predictions that were based on them in the past.
Still, we can only be sure of this once we elucidate the full extent to which this
mechanism influences regulation.

With all this talk of new mechanisms, it is easy to overlook the ones we are
already familiar with. The “conventional” high-throughput approaches like
microarray profiling and sequencing, which we dealt with above, focus on the
sequences of proteins and other targets, but we have long known that there is
more to proteins than their amino acid sequence. The phosphorylation state
of enzymes matters greatly to their function, both in metabolism as well as in
signaling (see Chapter 1 and e.g. [3, 22, 74, 81–86]). Therefore, it is important
to quantify phosphorylated protein isoforms in addition to total protein or
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Figure 7.1: The central dogma of molecular biology. Proteins are produced by translating messen-
ger RNA (mRNA) molecules into amino acid sequences. The mRNA, in turn, is transcribed from
the genome, which is made from DNA. This flow of information is highly conserved through-
out evolution (retroviruses are an exception, as they add one step in the inverse direction), but
the products of transcription and translation (RNA and protein) can exert influence on tran-
scription and translation. The dashed arrows represent RNA interference (RNA to translation),
transcriptional regulation (protein to transcription) and (post-)translational regulation (protein to
translation). As in these processes no RNA is produced from protein, and no DNA is produced
from RNA, they do not violate the central dogma, but they add a layer of complexity to the
simplistic “DNA becomes RNA becomes protein” mantra.

transcript levels, and microarray or sequencing approaches are not the tools
of choice for this.

Instead, the field traditionally relied on knowledge-driven research and
western blotting, but the recent implementation of reverse-phase protein ar-
rays (RPPA) has brought big data into the picture [248]. As a result, signaling
network dynamics can now be estimated based on high-throughput results,
rather than determined through specific, targeted experimentation. This has
the potential to accelerate knowledge generation in this field, and the approach
has been shown to work in practice [352].

The work on the CXCR4/CXCR7/CXCL12 signaling axis described in Chap-
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ter 3 is another example of such a data-driven systems biological study of a
signaling network. It illustrates the application of high-throughput technol-
ogy in the identification of qualitative connections, or broadly speaking, the
network’s structure. Quantitative statements about the dynamics of networks
and interactions require even larger amounts of data, in addition to knowledge
of the network structure. Thus, in the case of CXCR7-mediated signaling, a
system whose network structure is poorly understood at present, we cannot
understand the dynamics before we understand the structure, and this is what
we contributed to in Chapter 3.

The methodological side of systems biology

In the section above, the analysis step that lies between data and knowledge
was omitted for readability, but the importance of appropriate methods for
analyzing large quantities of data is uncontested. Indeed, the availability of
methods that help make sense of data and models is an important determining
factor of the success of research. For example, the mathematical basis of stoi-
chiometric modeling and flux balance analysis was laid more than two decades
ago, but convenient tools to leverage this technique had yet to be developed
at that time [353]. Interestingly, the strain that FBA places on computational
resources is quite limited (solving large models would have been feasible two
decades ago — genome-scale models just weren’t there yet, because there was
no genome-scale data), but the use of the technique only accelerated when
larger models and adequate tools became available. Notable among the latter
for their widespread adoption by the community were PySCeS [147] and the
COBRA toolbox [148], but while these tools are highly versatile, they have a
steep learning curve which, for many users, already starts at the installation
step. The methodological work I have presented in this thesis can be seen
as an effort to make existing mathematical techniques accessible to a broader
audience of investigators and educators (Chapters 4–5).

In addition to facilitating the mathematical side of modeling, with FAME,
we broke ground by offering so-called “supervised” results visualization func-
tionality. Users can now superimpose results on a graphical map of metabo-
lism, without first having to supply their own hand-drawn map. Prior to
this, visualization had mostly been an afterthought. FAME’s initial visualiza-
tion capabilities were limited by the availability of high-quality base material
(specifically, the KEGG maps [281]), but this changed with our development
of a “universal map”: One that is both human and computer friendly, and that
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can be used for a multitude of species.
It is difficult to quantify the impact of a graphical representation of some-

thing on our way of thinking, but it is clear that it is there. In linguistics, a
related notion is known as “linguistic relativity”: The language you speak in-
fluences the way you think [354,355]. Similarly, most biologists will agree that
the impact of the “standard” two-dimensional representations of metabolic
pathways on our way of thinking about them has been huge. For instance,
virtually all biologists with basic knowledge of metabolism will schematically
draw core metabolism, and particularly glycolysis, the same way.

This has profound implications for the way we approach the questions we
face as scientists, which in turn suggests that if there were a zero-effort way
of visualizing our thoughts, data, and networks differently, or more compre-
hensively, then this would directly influence the way we generate hypotheses
and approach problems. The universal map we describe in Chapter 5 is a
first step upon this path, but in contrast to the WikiPathways and Recon
2 projects [50, 323], which are of an encyclopedic nature, expansion of this
map does not require encyclopedic knowledge from individual contributors
— they can just draw whatever they think is pretty or useful. Still, we feel
that a comprehensive map is of vital importance to the study of metabolism,
and its expansion will require a community effort. We have strived to make
this as seamless as possible by using the tried-and-tested Git collaboration
architecture [315].

The many aspects of systems biology

Systems biology is as multifaceted a field as cancer is a disease. Successfully
applying a systems approach to, well, any kind of biology requires the simulta-
neous consideration of many of these facets. At the same time, many of these
individual aspects are mature research areas in their own right, and taking
them for granted would not do them justice. Therefore, in this section, we will
explore several facets of systems biology in isolation, before reappraising the
bigger picture.

Of systems and software

A key feature of scientifically relevant work, in any field, is that it gives rise
to new ideas or inspires new research. Computational tools aid this process,
but to those interested in applied bioinformatics, also pose questions and
challenges of their own. For instance, spending time to create user-friendly
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software, rather than plain raw functional software, is often frowned upon
in scientific software development (the installation procedure of the COBRA
Toolbox [148] is a testament to this). There seems to be an unspoken resignation
that installation procedures need only be marginally documented, and that
aspiring users just have to invest some of their time to figuring it out before
they can use their peers’ work to go do science.1

After all, scientists (generally) are smart people. But imagine the number
of extra (wo)man-hours these smart people could spend on asking and an-
swering interesting scientific questions if they would not have to figure out
complex installation procedures or troubleshoot poorly documented analysis
subroutines! Add to this the number of extra (wo)men that will be able to
carry out the analyses in the first place if adequately human-friendly software
is available, and the number of students that can be instructed in procedures
that were previously too complex, and it becomes clear that more time should
be spent improving the availability of computational methods, and less time
should be spent ridiculing those who cannot operate “good old-fashioned aca-
demic software” (a euphemism for “software that may or may not work as
advertized”).

Fortunately, in spite of the harsh-yet-hopeful words above, awareness of a
more user-centered perspective on scientific software has recently been build-
ing [356,357]. Thus, the future of systems biology, from a technology perspec-
tive, is one in which this growing field of scientists appreciate what software
can do for them, as well as what they can do for software.

Of systems and sequencing

In the field of sequence analysis, software is a dire necessity, but as we can now
generate data faster than we can interpret them, software matters recede into
the background once the raw data has been processed and the analysis can be-
gin. The technology-driven chapters of this thesis (Chapters 2 and 3) illustrate
this point, as there, too, the “bio” takes precedence over the “informatics”.

The biology-driven analyses, in turn, lead to new knowledge and more
questions, which new (high throughput) experiments can then be designed
for, leading to analysis and new knowledge and questions, etc. The inter-
twinement of systems and sequencing make “systems bioinformatics” more
than just a catchphrase, it is the art of asking the right questions. And with

1This is not only a problem with scientific software. In scientific literature, materials and
methods sections are usually insufficiently detailed to reproduce experiments and confirm con-
clusions.
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regard to the opportunities RPPA and smallRNA sequencing present, we are
not nearly out of good questions.

RPPA offers an unprecedented high throughput insight into the levels and,
more importantly, the phosphorylation states of proteins [248]. The questions
we asked and answered in Chapter 3 were of the obvious but necessary kind,
as the study of any system becomes much more meaningful once the system’s
structure is known. But since RPPA is an antibody-based assay that can
specifically target phosphorylated isoforms, we can think bigger.

How about simultaneously sampling the levels and phosphorylation states
of glycolytic enzymes, as well as metabolite levels, and using the resulting data
to refine our already fine-grained understanding of glycolytic kinetics [98]?
This could even be combined with an evaluation of the cells’ response to some
kind of stimulus, such as activation of CXCR4 or CXCR7 by CXCL12.

Likewise, our analysis of sequencing data leads to some interesting follow-
up questions, ranging from the obvious to the more far-reaching. As for the
former, does a loss of PAPD5, PARN, or other components of the tailing-and-
trimming machinery cause phenotypical alterations at the organism level?
This would speak to their significance, but more importantly, it could shed
light on idiosyncratic disease phenomena, which could in turn lead to therapy
development. Of course, homing in on the specific contribution of miRNA
tailing-and-trimming is complicated by the fact that PAPD5 and PARN also
have roles in the maturation of snoRNA-63 [202] and other small RNAs
(e.g. [214]), as well as by the involvement of other enzymes, like GLD2, in
the same processes [183, 193, 193].

Further removed from the work presented in this thesis, but no less inter-
esting, is the question of how sequencing data can help form connections in
our knowledge of metabolism and signaling on a broader scale. For instance,
single nucleotide polymorphisms (SNPs) were recently shown to have the po-
tential to influence various metabolic processes [358]. In chemokine signaling,
too, the influence of SNPs on phenotypical phenomena has long been known
and appreciated [359], and mutations that are relevant to human health have
been described for CXCR4 as well as CXCL12 [360, 361]. The combination of
this kind of genetic/phenotypic knowledge with our expanding knowledge of
the structures of the systems inside the cell will herald a new kind of insight,
one which will surely help form and reinforce our (mental) models of the link
between genotype and phenotype.
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Of systems and signal transduction

In signal transduction, the function of a protein is almost always ambiguous,
if its function is even known to begin with. This is a consequence of the
way signaling networks work, and the biochemical requirements this puts on
receptors and downstream effectors. Like metabolism [362, 363], the immune
system [364], and even the internet [365], signaling is often schematically
compared to a bow tie structure [366] (Figure 7.2A). There are many inputs
(receptors for different environmental stimuli), a relatively small number of
enzymes that integrate these many signals (the signal transduction network),
and a large number of executive outputs that can tell the cell what to do (mostly
transcription factors) [367].

CXCR4 and CXCR7 are receptors and obviously reside on the input side
of this imaginary bow tie, but the results of the RPPA experiment described in
Chapter 3 illustrate that despite the relatively small number of proteins in the
middle section of the bow tie, the complexity of this section far exceeds that of
the input and output sides (Figure 7.2B). Just like a real-world bow tie hides an
intricate knot in the center, so does the (woefully overused) biological analog.

So while Figure 7.2A may look elegant, it does not do justice to the complex
biology it describes. The signaling response to CXCL12 stimulation is an
illustration of this. The two chemokine receptors that bind this ligand elicit
different signaling responses, but exhibit crosstalk with each other and with
other receptor networks [368–370]. In part, this is due to the atypical β-arrestin
dependent signaling that CXCR7 has been associated with [228]. However, it
is fair to ask what the functional consequences are of having CXCR4, CXCR7,
both receptors, or none of them on the cell surface, and this is an important
future line of research.

It is tempting to think that CXCR4 is the major contributor to the CXCL12
response, with CXCR7 as a (minor) backup, but as it stands, the only reason
for this speculation would be our meager understanding of the response to
CXCR7 activation. It requires no explanation that this kind of reasoning cannot
stand on its own, so instead, in Chapter 3, we described the discovery of the
involvement of MAPK in the downstream signaling network of CXCR7 in
BT474 breast cancer cells.

Connections like these lay a qualitative foundation upon which quantita-
tive models can be based [371]. Ample examples of these systems approaches
to signaling exist and have yielded valuable results in the past [372–374], so
not only is the elucidation of the CXCR4/CXCR7 signaling network “an impor-
tant future line of research”, it is also a feasible one. Just like in metabolism,
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Figure 7.2: The bow tie representation of regulation. (A) In its classical form, the bow tie represen-
tation of regulation depicts many different inputs (stimuli), many different outputs (responses),
and a relatively compact core that sets in motion a specific (set of) output(s) when triggered by a
specific (combination of) input(s). The core is viewed as a black box with relatively few actors,
but the highly complex internals are never specified. (B) Those who venture inside the black box
invariably learn that the complexity of the interactions in the signal transduction core is vast, and
to reflect this, I propose the “poorly knotted bow tie” model of regulation. In this poorly knotted
bow tie, the knot is enlarged and its internals spill out into view, in an effort to more accurately
represent the complex and important contribution of the signal transduction machinery to the
integration of signals into actions by the cell.

however, stringing together multiple kinetic models of signaling is a tricky
endeavor, but just like for metabolism, an answer to this complexity lies in
abstraction. Petri nets are an implementation of one such answer [375–377],
and even though the first genome-scale Petri net model of signaling has yet to
be created, this future larger-scale signaling model would be mathematically
compatible with existing metabolic Petri net reconstructions [378].

Of systems and stoichiometric modeling

For metabolic models, stoichiometric models have been used to leverage struc-
tural information even in the absence of complete kinetic knowledge [326,379].
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As the structural properties of models of human metabolism are unambiguous
and seldom form a source of disagreement, one would expect the resulting
models to be used to generate predictions that can subsequently be tested.
However, several issues have thus far stood in the way of this.

For one, Recon 1 and Recon 2 are reconstructions, and not models [50,
155]. The authors do indicate this (hence the “Recon” nomenclature), but
the inclusion in Recon 2 of a non-human biomass equation inadvertently
reinforces the misunderstanding that it is a model. Another issue is that the
format in which derivative models were made available (if they even were)
was not standardized, even though a suitable and widely ccepted standard
was available in the form of SBML [146].

This made existing work difficult to reuse. For instance, a Recon 1-based
model published by Folger et al. [160] requires extensive parsing to get it into
SBML format. Nevertheless, and perhaps surprisingly, information from the
model was reused: the biomass equation in Recon 2 was taken straight from the
Folger et al. model, which in turn had adapted it from (mouse) literature [46].
The fact that this biomass equation was not elementally balanced could easily
go unnoticed in the review process, as neither tools nor policies for checking
this type of supplementary information were generally implemented in the
review process.

Fortunately, this situation is on the verge of being remedied, as publishers
like PLoS are adapting their policies to mandate the deposition of mathematical
models into repositories, just like similar policies were developed for protein
structures and sequencing data in the past. This development will also make
it easier for reviewers to check for consistency between manuscript text and
modeling results.

To underscore the importance of readers and reviewers being able to eas-
ily reproduce modeling results, we implemented an innovative solution of
our own when we recently published a graphical map of Synechocystis me-
tabolism [322]. The web-based environment in which we made the map and
model available (http://f-a-m-e.org/synechocystis/) supports the reproduction
of all modeling results and figures in the article, and we encourage and offer
to facilitate all researchers who wish to follow this example when publishing
models and results. Additionally, with the biomass equation we present in
Chapter 6, modelers now have a starting point for making their work (truly)
specific to human cells. But between that and detailed reconstructions like
Recon 2.1 [339], where do the opportunities lie for future work?

The long term goal, of course, is integration of the metabolic domain with
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knowledge and data from neighboring fields, like the regulatory machinery.
A way to start, without requiring a priori knowledge of the combined system’s
full structure, is to assess what we know about the coincidence of a certain
regulatory state of the cell with certain metabolic states (or vice versa). Given
enough data points, such information may be used to elucidate the structure
of the network at the interface of regulation (in a broad sense) and metabo-
lism. Structural knowledge, in turn, can be leveraged by detailed models that
include a regulatory layer, much like was done for Escherichia coli by Thiele et
al. [136].

Until we get to that point, however, there are things we can do now with the
tools, knowledge, and data that are available. These things form up three broad
categories. Firstly, tissue-specific models can be generated by taking subsets
of the generic human metabolic reconstruction, based on e.g. gene expression
data. Bordbar et al. [164] exemplify this approach, and while their subsequent
analysis incorporated only the structure of the networks, their methods are
transferable.

Secondly, tissue-specific models can be used for tissue-specific simulations
by using tissue-specific data quantifying metabolite consumption and pro-
duction. The metabolite profiling study by Jain et al. produced such data for
the NCI-60 panel (sixty cell lines), which makes this data set useful for the
instantiation of single models as well as for semi-automated comparisons and
lead discovery [45].

Finally, we can leverage existing knowledge about the structure of the
human metabolic network and infer new knowledge or ideas from it. This
is the approach taken by Folger et al. and Li et al. [160, 380], who used drug-
reaction interactions in combination with the Recon 1 network structure and
predicted novel drug targeting strategies and synergies. It is to be expected that
this approach will soon be applied to the next generation of human metabolic
models (i.e. Recon 2.1/2.1x [339]), and our knowledge base increases further,
at very modest expense.

Of systems and cancer

All subfields of systems biology come together in the study of disease in
human cells. Cancer is notable among human diseases, as it lends itself to
being studied from the genome-scale metabolic perspective because of its
distinctive metabolic phenotype [1]. Given the many different arguments for
either a metabolic or a regulatory explanation, it is likely that the Warburg
effect is the result of a combination the two. Indeed, when viewed within
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an integrative mental framework, the many interconnections between the two
realms argue for an integrative (but yet unknown) explanation. We have made
a case for this in Chapter 1, and the integrative context of these systems has
also been reviewed by others, who have reached similar conclusions [53].

There are potentially profound implications for the treatment of cancer if
this systems view becomes widely adopted and finds its way into the clinic. Of
course, most of the work in this thesis is of a very fundamental nature, and even
a corny speculative “bench to bedside” prediction would seem like a stretch
here. But it is also difficult to predict the shape an integrative approach to
cancer treatment would have to take, since the currently dominant paradigm
of evidence-based medicine [381] relies heavily on randomized controlled
trials to supply the evidence that give it its name.

Systems biology concerns itself with the (biochemical) mechanisms upon
which these trials are later based, but not so much with the trials or drugs
themselves. It is, in the clinical sense, a hypothesis-generating link in the
chain from bench to bedside (there, I did it); even as it generates and tests its
own biochemical hypotheses, the clinical implications are usually uncertain.
In other words, systems biology can be used to discover connections, that may
then later be exploited clinically.

Therefore, the onus is now on the systems biology community to not only
study individual systems, but to connect them, and to develop the tools needed
to do this. Working from the bottom up, while useful in the study of indi-
vidual systems, is not feasible in this realm, and loses out to high-throughput
approaches.

This grand vision of integration, first and foremost, means that a model of
how the regulatory (= signaling, transcription) and executive (= metabolism,
motility, etc.) systems interact will have to be developed. To maximize the
clinical impact of this understanding, the regulation of regulation (by e.g. mi-
croRNAs) will also have to be modeled, as it is highly likely that these phenom-
ena, too, influence cancer on various levels. For instance, even in the nascent
and fundamental field of miRNA modification, 3’ adenylation of a miRNA has
already been shown to influence the translation of p53 mRNA [193].

Although it cannot exist without building upon previous work in individ-
ual systems, the importance of an integrative view in the quest for a cure to
cancer cannot be overstated. It is in the context of this integrative framework
that the work that is described in this thesis will have to be assessed, and
hopefully prove useful in understanding the physiology of healthy and can-
cerous cells. Ultimately, both the scientific community, who will be required
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to team up and share credit, as well the general public, who will have to fund
them, will need to be convinced of the merits of this approach to make this
happen [382].

But the best summary of our current position in the fight against cancer
is perhaps in a quote from an ancient Chinese general, more than 2,000 years
before there even was a fight against cancer — and he did not have to worry
about funding.

Know yourself and know your enemy.
You will be safe in every battle.
You may know yourself but not know your enemy.
You will then lose a battle for every battle you win.
You may know neither yourself nor your enemy.
You will then lose every battle.

— Sun Tzu, The Art of War
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Over systemen en kanker

Al sinds de jaren ’30 van de vorige eeuw weten we dat het metabolisme van
kankercellen afwijkt van dat van normale cellen. De bekendste uiting hiervan
is het Warburg-effect, de observatie dat kankercellen glucose op inefficiënte
wijze omzetten in (2) ATP en melkzuur, ook als er voldoende zuurstof aan-
wezig is om het via oxidatieve phosphorylering voor ∼30 ATP te verbranden.
Voorgestelde verklaringen voor het typische kanker-fenotype zetten meestal
in op de signaleringsmachinerie of op het metabolisme, maar het ontbreken
van dé verklaring voor kanker is wellicht zelf al de beste illustratie van de
behoefte aan een systeembenadering die beide velden verenigt. In dit proef-
schrift belicht ik enkele onderwerpen die bijdragen tot het afwijkende metabole
fenotype van kanker, en doe ik een poging die te begrijpen binnen het grotere
raamwerk van de cel als geheel van systemen.

Cellulaire signalering wordt vaak beschouwd als het mechanisme dat aan
de hand van stimuli uit de omgeving het lot van de cel bepaalt. Binnen
deze regulatiemachinerie hebben microRNAs zich in recente jaren een plaats
verworven, en ook in de etiologie van kanker laten ze zich niet onbetuigd.
Een van de archetypische oncomiRs, miR-21, is in deze laatste context geen
onbekende, en keer op keer blijkt dit microRNA bij allerlei typische kanker-
kenmerken betrokken te zijn. In borstkankercellen, waarin overexpressie van
miR-21 eerder regel dan uitzondering is, vonden we indicaties dat bepaalde
3’ isovormen van miR-21 het doelwit zijn van een enzymatisch degradatieme-
chanisme. Dit mechanisme, dat we daarna ook in allerlei andere celtypen en
organismen terugvonden, werkt doordat de tumor suppressor PAPD5 miR-
21+C eerst adenyleert, waardoor het microRNA vervolgens vatbaar wordt
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voor degradatie door een exoribonuclease, waarschijnlijk PARN (Hoofdstuk
2).

Het onderzoek naar de bijdrage van individuele microRNAs aan het alge-
hele (kanker)fenotype maakt deel uit van een relatief jong en dynamisch veld,
waarin nog veel onbekend is. De rol die de “gewone” signaleringsmachinerie
speelt wordt al langer onderkend, en het napluizen van de interacties tussen
signaleringseiwitten en de pathways die zij samen vormen heeft al vele nuttige
inzichten opgeleverd. In dit kader wordt behalve enzymkinetiek tegenwoor-
dig ook de samenhang tussen eiwitten en pathways op systeembiologische
wijze onderzocht.

In dit verband bestudeerden wij het netwerk van reacties dat het gevolg
is van de activatie van de chemokinereceptoren CXCR4 en CXCR7 door hun
ligand, de chemokine CXCL12. De betrokkenheid van deze receptoren bij
het verloop van kanker is bekend, maar wat hun precieze bijdrage is is nog
onduidelijk, vooral in het geval van CXCR7. Met behulp van Reverse Phase
Protein Arrays, een op antilichamen gebaseerde technologie, konden we in
een tijdsreeks niet alleen de relatieve hoeveelheid van allerlei signaleringsei-
witten bepalen, maar ook een onderscheid maken tussen de gefosforyleerde
en niet-gefosforyleerde varianten van deze eiwitten. Door de tijdsreeks te her-
halen met toevoeging van inhibitors van CXCR4, CXCR7, of beide receptoren,
konden we vervolgens de bijdragen van de twee eiwitten onderscheiden, en
vaststellen dat p42/44 MAPK als gevolg van CXCR7-activatie gefosforyleerd
wordt, hetgeen we vervolgens met Western blots bevestigden (Hoofdstuk 3).

In contrast tot de signaleringsmachinerie staat het metabolisme. Meta-
bole enzymen bewerken in de regel kleine moleculen in plaats van andere
eiwitten, en hierdoor is voor het op grote (genoom)schaal bestuderen van het
metabolisme een heel andere aanpak nodig dan voor onderzoek naar signa-
lering. Zelfs de op kinetiek gebaseerde aanpak die voor een kleinschaliger
bestudering van het metabolisme in het verleden zeer nuttig is gebleken, staat
buitenspel wanneer inzicht in het grotere plaatje het doel is.

Het antwoord op deze uitdaging wordt gevormd zogenoemde genome-
scale metabolic models (GSMM’s), waarin weliswaar informatie over regu-
lering en kinetiek expres wordt weggelaten, maar die toch op basis van de
omgeving van de cel en de structuur van een complex en groot netwerk van
metabole reacties licht kunnen werpen op de eigenschappen van het systeem.
Door de omvang van de hiervoor gebruikte modellen was het lastig om deze
modellen op een handige manier samen te stellen en te ‘ondervragen’, nog
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voordat men aan de oorspronkelijke biologische uitdaging toekwam. Om
deze barrière te slechten voor zowel onderzoekers (inclusief ondergetekende)
en onderwijzers hebben we FAME ontwikkeld, een grafische online tool voor
het makkelijker werken met GSMM’s, voordat we aan het ‘echte’ modelleer-
werk begonnen (Hoofdstuk 4).

Een tweede uitdaging bij het werken met GSMM’s wordt gevormd door de
grote hoeveelheden data die resulteren uit simulaties. Het overgrote deel van
deze data is helemaal niet interessant, maar zonder op maat gemaakte analyse-
programmatuur was het zoeken naar de biologische betekenis van resultaten
een haast Herculeaanse onderneming. Om dit analyseproces mensvriende-
lijker te maken hebben we grote metabole landkaarten ontworpen die zowel
door computers te lezen en bewerken zijn, als door mensen te interpreteren
zijn. Door hergebruik van bestaande technologie hebben we deze kaarten
vervolgens geïntegreerd in FAME, om ze voor alle onderzoekers van nut te
laten zijn (Hoofdstuk 5).

Het uiteindelijke doel, het bestuderen van de eigenschappen van het men-
selijk metabolisme in kankercellen, was hiermee in zicht. Een zeer volledige
reconstructie van het metabole netwerk dat gecodeerd wordt door het gehele
menselijk genoom was hiervoor beschikbaar in de vorm van ‘Recon2’. Het
uiteindelijke doel van de simulatie van kankermetabolisme, de productie van
nog meer kankercellen, is echter zeer afhankelijk van de in het gebruikte mo-
del aanwezige biomassavergelijking. Omdat in het geval van Recon2 sprake
was van een uit allerlei verschillende (niet humane) diersoorten opgebouwde
biomassareactie, hebben we de eerste experimenteel verkregen op GSMM’s
gerichte biomassavergelijking bepaald. Na het als ‘objective function’ op-
nemen van deze op de HL-60 leukemiecellijn gebaseerde biomassareactie in
Recon2 bepaalden we vervolgens wat met het oog op de structuur van het me-
tabole netwerk de minimale (medium)vereisten zijn voor de groei van deze
kankercellen. Opvallend hierbij was dat de resultaten de aandacht vestigden
op verscheidene vaak over het hoofd geziene vetzuren. Daar deze vetzu-
ren niet aanwezig zijn in het gedefinieerde gedeelte van RPMI1640-medium,
moesten deze dus wel afkomstig zijn geweest uit het serumgedeelte van dit
groeimedium; we konden dit inderdaad experimenteel bevestigen (Hoofdstuk
6).
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It has long been known that cancer has aberrant metabolic properties com-
pared to healthy cells, including, famously, the tendency to forgo oxidative
phosphorylation and produce lactate instead, even when oxygen is present.
In the study of these properties, traditional metabolism-only and regulation-
only approaches have shed some light on the matter, but no single explanation
has covered all aspects of the Warburg effect — let alone all hallmarks of cancer.
This thesis attempts to view the various systems that contribute to cancer’s
reprogramming of energy metabolism in a broader context, to shed light on
the mechanisms that underlie cellular function in health and disease.

Regulation is traditionally viewed as a “governing mechanism” in cellular
function, as the system that decides cell’s responses to its environment as
well as its eventual fate. MicroRNAs have relatively recently secured their
position in our concept of the regulatory landscape, as well as in the study
of cancer etiology. MiR-21, as one of the archetypical oncomiRs, is quite
famous in the latter context, and its involvement in various cancer hallmarks
(including cancer metabolism) has been demonstrated in the past. In breast
cancer, a cancer type in which miR-21 is known to be strongly overexpressed,
we discovered that an enzymatic degradation mechanism specifically operates
on certain 3’ isoforms of miR-21. In this mechanism, which was also found
in a variety of other cell types and species, miR-21+C is first adenylated by
the tumor suppressor PAPD5, which renders the microRNA susceptible to a
subsequent degradation step by an exoribonuclease, probably PARN (Chapter
2).

While the elucidation of the contribution of individual microRNAs to the
cancer phenotype is a budding field of research, “regular” signaling enzymes
have had their role in cancer appreciated for quite some time, and in the past,
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the identification of the roles of individual proteins within signaling path-
ways and the roles of these pathways in cancer has proven fruitful on many
occasions. We studied the downstream network of the chemokine receptors
CXCR4 and CXCR7, which are both activated by the chemokine CXCL12, us-
ing a time course of reverse-phase protein array (RPPA) assays. The involve-
ment of chemokine receptors in cancer is well known, but the precise extent
of this involvement is unclear, especially in the case of CXCR7. As RPPA is
an antibody-based technology, it can distinguish between phosphorylated and
non-phosphorylated isoforms of the same signaling enzyme, and their relative
levels can be tracked over a time course of CXCL12 stimulation after inhibition
of either CXCR4 or CXCR7, or of both. Using RPPA data, we identified p42/44
MAPK phosphorylation as an event downstream of CXCR7 activation, and
we then confirmed this in separate Western blotting experiments (Chapter 3).

In contrast to the signaling machinery, metabolic enzymes primarily act on
small molecules rather than on other enzymes. Therefore, the tools used to
study metabolism on a genome-wide scale are vastly different from those used
to study signaling, and even from those traditionally used to study metabolism
on a smaller scale (namely, kinetic models).

Genome-scale metabolic models (GSMMs), although a coarse-grained ap-
proach that purposely ignores various regulatory and kinetic aspects, can shed
light on the properties of a large metabolic system based on its structure and
on the specifications of its environment. However, their size and format made
working with them an exercise in software installation and troubleshooting in
addition to the biological challenge at hand. To help overcome this impedi-
ment for both researchers (including yours truly) and educators, we developed
FAME, an install-free graphical online tool for working with GSMMs, before
doing our modeling work (Chapter 4).

A subsequent secondary challenge was the interpretation of the vast amounts
of results that GSMM analyses produce. Without custom-made computational
support, finding the biological phenomenon of interest if one does not know
where to look beforehand is an almost Herculean task. Thus, to make the
analysis process more human-friendly, we developed hand-drawn maps of
metabolism that can be read by computers as well as intuitively interpreted by
researchers. By repurposing existing technology to make the map adapt to the
model under study as well as integrate with FAME, the results interpretation
step of GSMM research should be greatly facilitated (Chapter 5).
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We then proceeded to study the properties of human metabolism in cancer
cells. A very comprehensive reconstruction of human metabolism (“Recon2”)
was available for just this purpose, but its biomass equation being derived from
a combination of non-human species, we first experimentally determined the
first human biomass equation for use in genome-scale models. After including
the biomass composition of HL-60 human leukemia cells as an objective func-
tion in Recon2, we determined the requirements for growth that this biomass
equation places on the medium. We discovered that several fatty acids are es-
sential for HL-60 growth, and since the defined part of RPMI1640 medium does
not contain them, we separately confirmed their presence in serum-containing
medium (Chapter 6).
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